首页|GBDT集成算法在医院财务困境动态预测中的应用研究

GBDT集成算法在医院财务困境动态预测中的应用研究

扫码查看
传统财务困境动态预测模型在处理医院繁杂数据时准确率较低.为解决此问题,研究提出利用最小绝对收缩和选择算子算法选取财务指标,使用梯度提升决策树集成算法构建医院财务困境动态预测模型.结果表明,该模型的最高准确率为 96%、F值为 86%、G值为 93%,均高于另外六种用于对比的财务困境动态预测模型.且在试验过程中,研究提出模型的运行时间与平均误差分别为 23s、7%,均低于对比模型.实验显示,基于梯度提升决策树集成算法的医院财务困境动态预测模型的预测结果更准确、更可靠,为医院财务管理提供保证,从而提高医院财务的稳定性.
The application of GBDT integrated algorithm in the dynamic prediction of hospital financial distress
The traditional dynamic prediction model for financial distress has low accuracy when dealing with complex data in hospitals.To solve this problem,a study proposes using the minimum absolute contraction and selection operator algorithm to select financial indicators,and using the gradient enhancement decision tree ensemble algorithm to construct a dynamic prediction model for hospital financial distress.The results show that the highest accuracy of this model is 96%,with an F-value of 86%,and a G-value of 93%,all of which are higher than the other six dynamic financial distress prediction models used for comparison.And during the experiment,the research proposed that the running time and average error of the model were 23 seconds and 7%,respectively,which were lower than the comparison model.Experiments have shown that the dynamic prediction model for hospital financial distress based on gradient enhancement decision tree ensemble algorithm has more accurate and reliable prediction results,providing assurance for hospital financial management and improving the stability of hospital finance.

GBDT integration algorithmHospitalsFinancial difficultiesDynamic predictionLasso

赵小燕

展开 >

南京市浦口区中医院,江苏南京 211800

GBDT集成算法 医院 财务困境 动态预测 Lasso

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(4)