首页|基于灰色预测的光伏并网发电系统可靠性分析

基于灰色预测的光伏并网发电系统可靠性分析

扫码查看
为提高光伏并网发电系统故障预测精度,提高运行的可靠性,提出基于灰色预测的光伏并网发电系统可靠性分析方法。根据模糊C聚类算法对不同天气类型下的光伏并网发电系统出力值完成聚类处理,根据聚类结果对系统状态转移概率展开统计,并结合时间序列算法(ARMA)方法对不同系统转移状态展开计算,完成光伏并网发电系统时间序列模型的构建,应用灰度预测方法构建光伏并网发电系统状态预测模型,对光伏并网发电系统完成可靠性预测。试验结果表明,所提方法的系统发电输出功率与实际系统发电输出功率基本一致,所提方法的可靠性分析时间更短,发电系统故障率、实际可用率以及设备故障降额运行率与实际值更为接近。表明所提方法能够精准的获取系统未来运行状态,应用效果好。
Reliability analysis of photovoltaic grid connected power generation system based on grey prediction
To improve the accuracy of fault prediction and operational reliability of photovoltaic grid connected power generation systems,a reliability analysis method for photovoltaic grid connected power generation systems based on grey prediction is proposed.According to the fuzzy C clustering algorithm,the output values of photovoltaic grid connected power generation systems under different weather types are clustered.Based on the clustering results,the probability of system state transition is statistically analyzed,and the time series algorithm(ARMA)method is combined to calculate the transition states of different systems.The construction of a time series model for photovoltaic grid connected power generation systems is completed,and the gray prediction method is applied to construct a state prediction model for photovoltaic grid connected power generation systems,Complete reliability prediction for photovoltaic grid connected power generation systems.The experimental results show that the system generated output power of the proposed method is basically consistent with the actual system generated output power.The reliability analysis time of the proposed method is shorter,and the fault rate,actual availability rate,and equipment fault derating operation rate of the power generation system are closer to the actual values.This indicates that the proposed method can accurately obtain the future operational status of the system and has a good application effect.

Grey predictionPower generation systemReliabilityData clusteringFuzzy C clustering algorithm

冯青蓝、朱建国、汤婧婧、陈俊

展开 >

国网浙江省电力有限公司绍兴供电公司,浙江绍兴 312000

国网绍兴供电公司越城供电分公司,浙江绍兴 312000

灰色预测 发电系统 可靠性 数据聚类 模糊C聚类算法

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(5)