首页|基于GWO-LSTM质子交换膜燃料电池退化预测

基于GWO-LSTM质子交换膜燃料电池退化预测

扫码查看
针对长短期记忆网络模型方法预测质子交换膜燃料电池退化趋势精度低、泛化性能差的问题,提出一种结合长短期记忆网络模型和灰狼优化算法对质子交换膜燃料电池功率退化预测的方法。通过灰狼优化算法来优化长短期记忆网络模型的超参数——学习率和Dropout概率,提高预测效果。设计了仿真实验预测质子交换膜燃料电池的退化趋势,并同实际退化趋势数据对比来验证所提出的退化预测模型。结果表明,该方法不仅提升了长短期记忆网络模型的泛化性能,而且相较于传统的长短期记忆网络模型预测方法其预测精度提升了 56%。
Proton Exchange Membrane Fuel Cell Degradation Prediction Based on GWO-LSTM
A method combining Long Short-Term Memory networks and the Grey Wolf Optimization algorithm is proposed to address the issues of low prediction accuracy and poor generalization performance in predicting the degradation trend of Proton Exchange Membrane Fuel Cells using LSTM networks.The GWO algorithm is used to optimize the LSTM model's hyperparameters—learning rate and dropout probability—to improve the prediction results.Finally,simulation experiments are conducted to predict the degradation trend of PEMFCs,and the predicted results are compared with actual degradation data to validate the proposed degradation prediction model.The results show that this method not only improves the generalization performance of the LSTM model but also enhances the prediction accuracy by 56%compared to traditional LSTM-based prediction methods.

Proton Exchange Membrane Fuel CellDegradation PredictionGrey Wolf OptimizationLong Short-Term Memory Network

陈炜骏、留毅、陆斌、卢飞、缪宇峰

展开 >

国网浙江省电力有限公司 杭州市余杭区供电公司,杭州 311100

杭州电力设备制造有限公司 余杭群力成套电气制造分公司,杭州 311100

质子交换膜燃料电池 退化预测 灰狼优化算法 长短期记忆网络

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(6)