首页|妊娠子痫前期患者预后风险列线图模型的构建

妊娠子痫前期患者预后风险列线图模型的构建

扫码查看
目的:基于列线图分析妊娠子痫前期(PE)患者预后的影响因素。方法:回顾性选取 2022年 1月—2024年 6 月沧州市人民医院产科PE孕妇 250 例为研究对象,基于列线图分析妊娠PE患者预后不良的影响因素。结果:列线图模型的AUC为 0。981(95%CI:0。963~0。999),验证队列模型AUC为 0。964(95%CI:0。928~1。000),两者所生成的实际结果曲线与校准曲线的偏差较小,决策分曲线进一步证实了该模型的预测效能。结论:FIB、HDL-C、TC、TG以及重度PE均是妊娠PE患者预后不良的独立影响因素,基于此构建的列线图模型预测能力良好。
Construction of a nomogram model of prognostic risk in patients with preeclampsia in pregnancy
Objective:Analyse the factors influencing the prognosis of patients with preeclampsia of pregnancy(PE)based on nomogram.Methods:Retrospectively,250 pregnant women with PE in the obstetrics department of Cangzhou People's Hospital from January 2022 to June 2024 were selected as the study subjects,and the factors influencing the poor prognosis of pregnant patients with PE were analyzed based on nomogram.Results:The AUC of the nomogram model was 0.981(95%CI:0.963~0.999)and the AUC of the validation cohort model was 0.964(95%CI:0.928~1.000),both of which generated actual outcome curves with small deviations from the calibration curves,and the decision score curves further confirmed the predictive efficacy of the type.Conclusion:FIB,HDL-C,TC,TG,and severe PE were all independent influences on the poor prognosis of patients with gestational PE,and the nomogram model constructed on this basis had good predictive ability.

Pre-eclampsia of pregnancyAdverse pregnancyLogistic regressionInfluencing factorsnomogram

施民新、季海娜、刘国瑞、高伟、牟飞飞、李红心

展开 >

沧州市人民医院产科,河北 沧州 061000

沧州市人民医院检验科,河北 沧州 061000

妊娠子痫前期 不良妊娠 Logistic回归 影响因素 列线图

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(6)