首页|电力物联网终端漏洞自动挖掘方法研究

电力物联网终端漏洞自动挖掘方法研究

扫码查看
为了准确地判断电力物联网终端漏洞情况,提出基于改进ASTNN网络的电力物联网终端漏洞自动挖掘方法.采集电力物联网终端历史漏洞信息,并提取这些漏洞信息的特征,作为自动挖掘的依据.结合多种终端漏洞检测方法,建立可以用于漏洞分析的反过滤规则集.针对基于抽象语法树的神经网络进行分析,在编码层对表达式子树进行裁剪,形成可以更好理解语义信息的改进ASTNN网络,搭建自动挖掘框架,实现电力物联网终端漏洞挖掘.实验结果显示:所提方法的漏洞自动挖掘结果F1值总稳定在 0.97以上,满足了电力物联网终端漏洞检测要求.该方法提高漏洞挖掘的准确性和效率,具有较大的应用价值.
Research on Automatic Vulnerability Mining Method for Power Internet of Things Terminals
In order to accurately determine the vulnerability situation of electric power IoT terminals,an automatic vulnerability mining method for electric power IoT terminals based on improved ASTNN network is proposed.Historical vulnerability information of electric power IoT terminals is collected,and the features of these vulnerability information are extracted as the basis for automatic mining.Combine multiple terminal vulnerability detection methods to establish an anti-filtering rule set that can be used for vulnerability analysis.The neural network based on abstract syntax tree is analyzed,and the expression subtree is trimmed at the coding layer to form an improved ASTNN network that can better understand the semantic information,based on which the automatic mining framework is built to realize the vulnerability mining of power IOT terminals.The experimental results show that the F1 value of the proposed method is always stable above 0.97,which meets the requirements of vulnerability detection for power IoT terminals.The method improves the accuracy and efficiency of vulnerability mining and has greater application value.

improved ASTNN networkPowerInternet of ThingsTerminalvulnerabilityDeep learningAnti filtering rulesAutomatic mining

张佳发、农彩勤、王健、吴佩泽、刘家豪、王斌、陈锋

展开 >

南方电网数字电网集团信息通信科技有限公司,广州 510670

改进ASTNN网络 电力物联网 终端漏洞 深度学习 反过滤规则 自动挖掘

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(6)