首页|基于个性化召回LFM推荐算法的图书馆图书推荐方法研究

基于个性化召回LFM推荐算法的图书馆图书推荐方法研究

扫码查看
为解决传统图书推荐方法中推荐准确率不高的问题,本研究提出了一种基于个性化召回潜在因子模型的图书馆图书推荐方法。通过改进的LFM算法,本研究构建了图书推荐模型,并对其性能进行了验证。实验结果显示,该改进算法在精确率上达到 97%,在准确率-召回率曲线下面积为 0。87,均优于传统对比算法。此外,通过对模型的应用效果进行分析,发现模型在推荐准确性、易操作性、新颖性等多个方面表现优异,评分均不低于 9。0分。说明所提出的图书推荐方法有效提高了推荐准确率,且能够更好地满足读者的个性化需求。
Research on library book recommendation method based on personalized recall LFM recommendation algorithm
In order to solve the problem of low recommendation accuracy in traditional book recommendation methods,this study proposes a library book recommendation method based on personalized recall latent factor model.With the improved LFM algorithm,this study constructs a book recommendation model and verifies its performance.The experimental results show that the improved algorithm achieves 97%in precision rate and 0.87 area under the accuracy-recall curve,both of which are better than the traditional comparison algorithm.In addition,by analyzing the application effect of the model,it is found that the model performs well in several aspects,such as recommendation accuracy,ease of operation,and novelty,with scores of no less than 9.0.This indicates that the proposed book recommendation method effectively improves recommendation accuracy and can better meet the personalized needs of readers.

LFMClustering algorithmPersonalized serviceBooksRecommendation

王怡

展开 >

西安音乐学院图书馆,陕西 西安 710061

LFM 聚类算法 个性化服务 图书 推荐

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(6)