首页|基于合成少数类过采样技术算法的企业财务预警分析模型

基于合成少数类过采样技术算法的企业财务预警分析模型

扫码查看
财务危机会导致企业资金周转困难,生产、销售环节不能衔接,从而降低企业的盈利能力。因此为了实现财务危机的准确预测,提醒企业及时采取应对措施,研究建立了财务危机评价指标体系,并提出了基于合成少数类过采样技术算法及随机森林的危机预测模型。实验结果显示,相较于随机森林和支持向量机,研究提出的危机预测模型测试集中预测出了 17家ST企业,且无误判情况。模型的平均准确率、平均精确率及均接受者操作特征曲线下面积均高于其他模型,分别为 97。2%、96。7%和 0。91。由此可见,研究提出的危机预测模型能对企业财务危机进行准确预测,为企业提供准确的财务预警。
A Financial Early Warning Analysis Model for Enterprises Based on the Algorithm of Composite Minority Oversampling Technology
Financial crisis can lead to difficulties in capital turnover for enterprises,and the inability to connect production and sales processes,thereby reducing the profitability of the enterprise.Therefore,in order to achieve accurate prediction of financial crises and remind enterprises to take timely response measures,a financial crisis evaluation index system has been studied and established,and a crisis prediction model based on synthetic minority class oversampling technology algorithm and random forest has been proposed.The experimental results showed that compared to random forests and support vector machines,the crisis prediction model proposed in the study predicted 17 ST enterprises in the test set,and there were no false positives.The average accuracy,average accuracy,and area under the receiver operating characteristic curve of the model are all higher than other models,with values of 97.2%,96.7%,and 0.91,respectively.From this,it can be seen that the crisis prediction model proposed in the study can accurately predict the financial crisis of enterprises and provide accurate financial warnings for them.

Listed companiesFinancial crisisFinancial warningSMOTERandom Forest

祁晓敏

展开 >

东莞职业技术学院,广东 东莞 523000

上市企业 财务危机 财务预警 SMOTE 随机森林

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(6)