首页|基于旋律特征聚类优化的音乐哼唱检索方法研究

基于旋律特征聚类优化的音乐哼唱检索方法研究

扫码查看
现有的信息检索方法难以准确捕捉和匹配用户哼唱的旋律,因此,研究提出了一种哼唱检索方法,利用音乐乐器数字接口音频构建旋律特征数据库,通过分帧采样技术提取音高向量,并结合元数据进行存储。研究采用优化的聚类算法提高特征区分度,并使用神经网络进一步深化特征提取。在检索过程中,结合最小二乘法和动态时间规整算法快速准确地匹配用户哼唱的旋律。研究结果表明,优化的K-means算法在哼唱检索中表现出色,准确率和召回率分别达到 0。79 和 0。89,F1 值也较高。在类内平方和指标上,其得分低于 3。000,超越了其他算法,这表明了研究提高了音乐哼唱检索效率和准确性,为音乐信息检索技术提供了一种新的实用工具。
Music humming retrieval method based on melody feature clustering optimization
The existing information retrieval methods are difficult to accurately capture and match the melodies hummed by users.Therefore,a humming retrieval method is proposed,which uses the digital interface audio of music instruments to construct a melody feature database,extracts pitch vectors through frame sampling technology,and stores them in combination with metadata.The study adopts optimized clustering algorithms to improve feature discrimination and further deepens feature extraction using neural networks.During the retrieval process,combining the least squares method and dynamic time warping algorithm to quickly and accurately match the melody hummed by users.The research results indicate that the optimized K-means algorithm performs well in humming retrieval,with accuracy and recall rates of 0.79 and 0.89,respectively,and high F1 values.On the intra class sum of squares metric,its score is below 3.000,surpassing other algorithms,indicating that the research has improved the efficiency and accuracy of music humming retrieval,providing a new practical tool for music information retrieval technology.

K-means algorithmHumming retrievalMelodic featuresNeural network

曹云华

展开 >

云南省德宏师范高等专科学校,云南 德宏 678400

K-means算法 哼唱检索 旋律特征 神经网络

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(6)