首页|基于模糊神经网络的一体化监测设备可靠性评价

基于模糊神经网络的一体化监测设备可靠性评价

扫码查看
为了实现对一体化监测设备的可靠性综合评价,基于T-S模糊神经网络的方法,以时效性、粗差占比、采样间隔、误报次数4个指标作为输入向量,利用T-S模糊系统的数据处理能力、神经网络的非线性拟合能力及MATLAB软件编程,构建一体化监测设备的综合评价模型.将训练好的T-S模糊神经网络模型与BP神经网络模型同时用于6组监测设备的预测,从数值模拟与应用的情况可以看出,普适型设备略强于一体化监测设备,与实际情况相符.该方法在一体化监测设备的评价方面具有可行性和实用性,可以作为该设备在实践应用过程中可靠性的依据.
Reliability Evaluation of Integrated Monitoring Equipment Based on Fuzzy Neural Network
In order to realize the comprehensive evaluation of the reliability of the integrated monitor-ing equipment,the method based on T-S fuzzy neural network is adopted,and four indicators such as time-liness,gross error ratio,sampling interval and false positive number are taken as input vectors.The data processing capability of T-S fuzzy system,the nonlinear fitting capability of neural network and MATLAB software programming are utilized.A comprehensive evaluation model of integrated monitoring equipment is constructed.The trained T-S fuzzy neural network model and BP neural network model are applied to the prediction of 6 groups of monitoring equipment at the same time.From the numerical simulation and applica-tion,it can be seen that the universal device is slightly stronger than the integrated monitoring device,which is consistent with the actual situation.The method is feasible and practical in the evaluation of the in-tegrated monitoring equipment,and can be used as the basis for the reliability of the equipment in practice.

integrated monitoring equipmenT-S fuzzy systemneural networkreliability assess-ment

樊柄宏、刘清、周国彬、徐仁山、曾梓琪、程占括

展开 >

江西省地质局水文地质大队

南昌工程学院水利与生态工程学院

一体化监测设备 T-S模糊系统 神经网络 可靠性评价

2024

现代矿业
中钢集团马鞍山矿山研究院有限公司

现代矿业

影响因子:0.33
ISSN:1674-6082
年,卷(期):2024.40(3)
  • 14