首页|基于FCM-LSSVM算法的球磨机状态预测研究

基于FCM-LSSVM算法的球磨机状态预测研究

扫码查看
球磨机的稳定运行对选别作业的稳定给料和选别效益提升至关重要,现有的预测方法难以实现磨机状态的快速检测与准确识别.通过卡尔曼滤波改进最小二乘支持向量机方法建立了某铁矿选厂球磨机健康状态模型.根据选厂历史记录数据,采用K-means聚类算法训练得到球磨机的4种健康状态,实现了现场球磨机运行健康状态的实时快速识别.
Research on Ball Mill State Prediction Based on Kalman Filter Improved Least Squares Support Vector Machine(FCM-LSSVM)Algorithm
The stable operation of the ball mill is very important for the stable feeding and the improve-ment of the sorting efficiency.The existing mill state prediction method is difficult to realize the rapid detec-tion and accurate identification of mill state.The health state model of a ball mill in an iron ore concentrator is established by using Kalman filter modified least squares support vector machine method.According to the historical data of plant selection,four kinds of health state of ball mill are obtained by K-means cluster-ing algorithm training,and the real-time and rapid recognition of the running health state of field ball mill is realized.

ball millhealth state predictionKalman filterleast squares support vector machine

刘春辉、盖俊鹏、胡健、王迎镇、张兴帆

展开 >

鞍钢集团关宝山矿业有限公司

北京科技大学矿产研究院

中国科学院沈阳自动化研究所

球磨机 健康状态预测 卡尔曼滤波 最小二乘支持向量机

2024

现代矿业
中钢集团马鞍山矿山研究院有限公司

现代矿业

影响因子:0.33
ISSN:1674-6082
年,卷(期):2024.40(8)