首页|基于YOLOv7的煤样受载裂隙识别研究

基于YOLOv7的煤样受载裂隙识别研究

扫码查看
传统的裂隙检测方法存在人力、时间消耗大以及准确性不高等问题,因此提出了基于深度学习的裂隙检测方法.通过构建和训练YOLOv7深度神经网络模型,并利用大量的煤样图像数据,实现了对煤样中裂隙的自动化识别.试验结果表明,所采用的YOLOv7模型在裂隙检测方面取得了较高的准确性和鲁棒性,具有很好的应用前景.研究成果有望为煤矿行业提供一种高效、精确的裂隙检测解决方案,为煤炭生产的安全管理和质量评估提供有力支持.
Research on Identification of Loaded Crack of Coal Samples Based on YOLOv7
The traditional crack detection method has the problems of large manpower,time consump-tion and low accuracy.Therefore,a crack detection method based on deep learning is proposed.By construct-ing and training the YOLOv7 deep neural network model and using a large number of coal sample image da-ta,the automatic identification of cracks in coal samples is realized.The experimental results show that the YOLOv7 model has achieved high accuracy and robustness in crack detection,and has a good application prospect.The research results are expected to provide an efficient and accurate crack detection solution for the coal mine industry,and provide strong support for the safety management and quality evaluation of coal production.

deep learningYOLOv7object detectionidentification of cracks

李智勇、刘恩强、高辉

展开 >

陕西华电榆横煤电有限责任公司小纪汗煤矿

深度学习 YOLOv7 目标检测 裂隙识别

2024

现代矿业
中钢集团马鞍山矿山研究院有限公司

现代矿业

影响因子:0.33
ISSN:1674-6082
年,卷(期):2024.40(12)