首页|基于BP神经网络和遗传算法的围岩松动圈预测模型研究

基于BP神经网络和遗传算法的围岩松动圈预测模型研究

扫码查看
针对矿山巷道围岩松动圈测试中工作量繁重、测试成本高等问题,结合白象山铁矿实际工程,提出联合运用BP神经网络和遗传算法构建松动圈预测模型,以实现松动圈范围的预测.运用SPSS软件统计分析松动圈影响指标,通过频数分析确定重点的影响因素,并在此基础上选定了用于松动圈预测的指标;基于BP神经网络和遗传算法,构建GA-BP松动圈厚度预测模型;基于收集的松动圈数据,形成训练样本与测试样本,用训练样本训练预测模型,用测试样本检验预测模型的精度.结果表明:在经过30次迭代后,遗传算法适应度已非常接近最佳适应度.在5组测试数据中,最大的误差为15.2 cm,最小误差为1.13 cm,均不超过20 cm,说明该预测模型的预测精度较高,具有一定可靠性.
Research on Prediction Model of Surrounding Rock Loose Circle Based on BP Neural Network and Genetic Algorithm
Aiming at the problems of heavy workload and high test cost in the test of loose circle of sur-rounding rock in mine roadway,combined with the actual project of Baixiangshan Iron Mine,it is proposed to use BP neural network and genetic algorithm to construct the prediction model of loose circle to realize the prediction of loose circle range.SPSS software was used to statistically analyze the impact indicators of the loose circle,and the key influencing factors were determined by frequency analysis.On this basis,the indi-cators for the prediction of the loose circle were selected.Based on BP neural network and genetic algorithm,a GA-BP loose circle thickness prediction model is constructed.Based on the collected loose circle data,training samples and test samples are formed.The training samples are used to train the prediction model,and the test samples are used to test the accuracy of the prediction model.The results show that the fitness of genetic algorithm is very close to the best fitness after 30 iterations.Among the five sets of test data,the maxi-mum error is 15.2 cm and the minimum error is 1.13 cm,which are not more than 20 cm.It shows that the prediction model has high prediction accuracy and certain reliability.

underground roadwayprediction of loose circleBP neural networkgenetic algorithm

王晓玲、董亚宁、吕永建

展开 >

安徽马钢矿业资源集团姑山矿业有限公司白象山矿业分公司

安徽马钢矿业资源集团姑山矿业有限公司钟九矿业分公司

无锡地铁运营有限公司

地下巷道 松动圈预测 BP神经网络 遗传算法

2024

现代矿业
中钢集团马鞍山矿山研究院有限公司

现代矿业

影响因子:0.33
ISSN:1674-6082
年,卷(期):2024.40(12)