首页|基于CNN-Swin Transformer Network的LPI雷达信号识别

基于CNN-Swin Transformer Network的LPI雷达信号识别

扫码查看
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法.首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别.仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性.
LPI Radar Signal Recognition Based on CNN-Swing Transformer Network
Aiming at the problem of low recognition accuracy of the low probability of intercept radar signal modulation method un-der the condition of low signal-to-noise ratio(SNR),a radar signal recognition method based on Transformer and convolutional neu-ral network(CNN)is proposed.First,the Swin Transformer model is introduced and the CNN feature extraction layer is designed at the front end of the model to construct the CNN-Swin transformer network(CSTN).Then the time-frequency characteristics of radar signals are obtained by time-frequency analysis.The images are input into CSTN model for training after image preprocess-ing,and richer semantic information of images is continuously extracted from the bottom to the top of the network.Finally,six types of signals with different modulation modes are classified and recognized by Softmax classifier.Simulation experiments show that when the SNR is-18 dB,the average recognition rate of the method for six types of typical radar signals reaches 94.26%,which proves the feasibility of the proposed method.

low probability of intercept(LPI)radarsignal modulation method recognitionSwin Transformer networkconvolu-tional neural network(CNN)time-frequency analysis

苏琮智、杨承志、邴雨晨、吴宏超、邓力洪

展开 >

空军航空大学 航空作战勤务学院,吉林 长春 130022

解放军94891 部队,江苏 苏州 215159

低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析

国防科技卓越青年科学基金

315090303

2024

现代雷达
南京电子技术研究所

现代雷达

CSTPCD北大核心
影响因子:0.568
ISSN:1004-7859
年,卷(期):2024.46(3)
  • 19