现代雷达2024,Vol.46Issue(3) :96-103.DOI:10.16592/j.cnki.1004-7859.2024.03.016

融合SARIMA与BiLSTM的水利设施形变预测

Prediction of Water Conservancy Facilities Deformation Integrating SARIMA and BiLSTM

唐帅 杨涛 皮明 张良 袁自祥
现代雷达2024,Vol.46Issue(3) :96-103.DOI:10.16592/j.cnki.1004-7859.2024.03.016

融合SARIMA与BiLSTM的水利设施形变预测

Prediction of Water Conservancy Facilities Deformation Integrating SARIMA and BiLSTM

唐帅 1杨涛 1皮明 1张良 1袁自祥1
扫码查看

作者信息

  • 1. 西南科技大学 信息工程学院 特殊环境机器人技术四川省重点实验室,四川 绵阳 621010
  • 折叠

摘要

水利设施形变预测可以有效地判断水利设施的运行状态.水利设施安全监测数据是时间序列数据,既有趋势性又有季节性.为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题.该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度.结合某水电站 4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度.

Abstract

Prediction of water conservancy facilities deformation can effectively judge their operation state.Water conservancy facil-ities safety monitoring data is time series data,which has both tendency and seasonality.In order to obtain more accurate predic-tion results,a prediction model based on seasonal autoregressive differential moving average(SARIMA)model and bidirectional long and short time memory(BiLSTM)network is proposed in this paper,this model solves the problem that the correlation be-tween forward and backward in data cannot be fully utilized for prediction.In this model,SARIMA model is used to predict the lin-ear components of deformation data,BiLSTM model is used to predict the nonlinear components of deformation data.The model can better extract the nonlinear relationships in historical data and improve the prediction accuracy.SARIMA-BiLSTM model is es-tablished based on the monitoring data of 4#diversion culvert of a hydropower station,then the model is used to predict the time series of crack meter opening and closing gap.The prediction result of this model is compared with results of back propagation(BP)neural network model,SARIMA model and SARIMA-LSTM model.The comparison results prove that the prediction accura-cy is effectively improved by the proposed model.

关键词

水利设施监测/时间序列预测/趋势性/季节自回归差分移动平均模型/双向长短期记忆网络

Key words

water conservancy facilities monitoring/time series prediction/tendency/seasonal autoregressive differential moving average(SARIMA)/bidirectional long and short time memory(BiLSTM)network

引用本文复制引用

基金项目

国家重点研发计划(2019YFB1310504)

四川省自然科学基金(2022NSFSC0542)

出版年

2024
现代雷达
南京电子技术研究所

现代雷达

CSTPCD北大核心
影响因子:0.568
ISSN:1004-7859
参考文献量14
段落导航相关论文