首页|结合改进FPFH的Super-4PCS点云配准方法

结合改进FPFH的Super-4PCS点云配准方法

扫码查看
针对超四点快速鲁棒匹配算法(Super-4PCS)粗匹配过程计算复杂度较高,配准时间长等问题,提出一种结合改进快速点特征直方图(FPFH)的Super-4PCS粗配准算法.通过主成分分析法(PCA)从快速点特征直方图中筛选出能代表点云特征信息的特征点,并将筛选出的特征点云作为输入数据进行Super-4PCS粗配准,由Super-4PCS粗配准得到初始变换矩阵,再进一步进行最近点迭代算法(ICP)精配准.为了验证在不同密度点云下的匹配效率,分别使用Bunny、Dragon两种不同密度的点云数据集进行配准实验,在满足精配准精度的基础上,对比FPFH-SAC和Super-4PCS粗配准方法,粗配准速率分别提升了 72%和 58%,总体配准速率分别提升了 43%和 32%.
Super-4PCS Point Cloud Alignment Method Combined with Improved FPFH
In response to the problems of high computational complexity and long alignment time in the coarse matching process of the Super-4 Points Fast Robust Matching Algorithm(Super-4PCS),a Super-4PCS coarse alignment algorithm combined with the improved Fast Point Feature Histogram(FPFH)is proposed.The feature points that can represent the feature information of the point cloud are filtered from the fast point feature histogram by principal component analysis(PCA),and the filtered feature point cloud is used as the input data for Super-4PCS coarse alignment,and the initial transformation matrix is obtained from Super-4PCS coarse alignment,and then the nearest point iteration algorithm(ICP)fine alignment is further performed.Two points cloud data-sets with different densities,Bunny and Dragon,are used for the alignment experiments to verify the matching efficiency under dif-ferent densities of point clouds.Based on satisfying the fine alignment accuracy,compared with the FPFH-SAC and Super-4PCS coarse alignment methods,the coarse alignment rate is improved by 72%and 58%respectively,and the overall alignment rate is improved by 43%and 32%respectively.

point cloud alignmentFPFHSuper-4PCSPCAICP

曾伟、杨涛、喻翌

展开 >

西南科技大学信息工程学院,四川绵阳 621010

特殊环境机器人技术四川重点实验室,四川绵阳 621010

点云配准 快速点特征直方图 超四点鲁棒匹配算法 主成分分析法 最近点迭代算法

国家自然科学基金四川省自然科学基金

619014002022NSFSC0542

2024

现代雷达
南京电子技术研究所

现代雷达

CSTPCD北大核心
影响因子:0.568
ISSN:1004-7859
年,卷(期):2024.46(4)
  • 16