现代雷达2024,Vol.46Issue(5) :26-30.DOI:10.16592/j.cnki.1004-7859.2024.05.005

基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法

Multiple Extended Targets Tracker Based on CPHD Filter with Elliptic Random Hypersurface Model

滕明 侯亚威 李伟杰
现代雷达2024,Vol.46Issue(5) :26-30.DOI:10.16592/j.cnki.1004-7859.2024.05.005

基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法

Multiple Extended Targets Tracker Based on CPHD Filter with Elliptic Random Hypersurface Model

滕明 1侯亚威 2李伟杰3
扫码查看

作者信息

  • 1. 南京电子技术研究所,江苏南京 210039
  • 2. 中国卫星海上测控部,江苏江阴 214431
  • 3. 北京航空航天大学电子信息工程学院,北京 100191
  • 折叠

摘要

复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值.文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器.首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确.所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景.

Abstract

Multiple extended targets tracking in complex scenes has high application value in fields such as autonomous driving and target recognition.A cardinalized probability hypothesis density(CPHD)filter built on elliptic random hypersurface model(ER-HM)is presented in this paper.Firstly,based on the theory of finite set statistics,the Bayesian filtering framework of multiple ex-tended targets is established by using CPHD filter.Then,ERHM is used to describe the measurement source distribution of the ex-tended target,and unscented transform is used to embed the CPHD filtering process.Lastly,the simulation results show that the tracking performance of the proposed ERHM-CPHD filter is better than that of the traditional gamma Gaussian inverse Wishart CPHD(GGIW-CPHD)filter,and the parameter estimation of the extended targets is more accurate,when the clutter density is high and the position of newly generated targets is determined or the number of multiple extended targets is relatively large.The proposed method has good application prospects in using high-resolution radar for multi-target tracking.

关键词

多扩展目标跟踪/椭圆随机超曲面/势概率假设密度滤波器/无迹变换

Key words

multiple extended target tracking/elliptic random hypersurface model/cardinalized probability hypothesis density(CPHD)filter/unscented transform

引用本文复制引用

出版年

2024
现代雷达
南京电子技术研究所

现代雷达

CSTPCD北大核心
影响因子:0.568
ISSN:1004-7859
段落导航相关论文