现代雷达2024,Vol.46Issue(8) :22-28.DOI:10.16592/j.cnki.1004-7859.2024.08.004

基于改进EVM的雷达PRI调制类型开集识别

Open-set Recognition of Radar PRI Modulation Type Based on Improved EVM

文秋月 王志勇
现代雷达2024,Vol.46Issue(8) :22-28.DOI:10.16592/j.cnki.1004-7859.2024.08.004

基于改进EVM的雷达PRI调制类型开集识别

Open-set Recognition of Radar PRI Modulation Type Based on Improved EVM

文秋月 1王志勇1
扫码查看

作者信息

  • 1. 电子科技大学 数学科学学院,四川 成都 611731
  • 折叠

摘要

雷达脉冲重复间隔(PRI)的调制类型是分析雷达工作状态和任务的重要手段.针对常见PRI调制类型识别算法无法识别未知调制类型的问题,文中提出一种基于改进极值机(EVM)的雷达PRI调制类型开集识别方法.首先,采用残差-双向长短时记忆网络进行PRI序列的特征提取;其次,结合原型学习,利用基于距离的交叉熵损失和原型损失对特征提取网络进行训练;最后,在特征空间中引入已知类特征的线性组合以模仿未知类的行为,提出了改进的EVM模型.实验结果表明,与EVM相比,文中所提方法能够提升雷达PRI调制类型的识别准确率,且在开放的电磁环境下具有良好的开集适应性.

Abstract

The modulation type of the radar pulse repetition interval(PRI)is an important means to analyze the working state and task of the radar.In order to solve the problem that common radar PRI modulation type recognition algorithms cannot identify un-known modulation types,an open-set recognition method for radar PRI modulation types based on improved extreme value machine(EVM)is proposed.Firstly,the residual network and bi-directional long short-term memory network is used to extract the features of PRI sequence.Secondly,combined with prototype learning,the feature extraction network is trained by distance-based cross-entropy loss and prototype loss.Finally,an improved EVM model is proposed by introducing a linear combination of known class features into the feature space to simulate the behavior of unknown classes.Experimental results show that compared with EVM,the proposed method can improve the recognition accuracy of radar PRI modulation type,and has good open-set adaptability in open electromagnetic environment.

关键词

脉冲重复间隔调制类型/开集识别/残差网络/双向长短时记忆/原型学习/极值理论

Key words

pulse repetition interval(PRI)modulation type/open-set recognition/residual network/bi-directional long short-term memory(BiLSTM)/prototype learning/extreme value theory

引用本文复制引用

基金项目

中央高校业务费咨询资助项目(Y030202063010101)

出版年

2024
现代雷达
南京电子技术研究所

现代雷达

CSTPCD北大核心
影响因子:0.568
ISSN:1004-7859
段落导航相关论文