首页|车载平台毫米波雷达三维点云视频成像

车载平台毫米波雷达三维点云视频成像

扫码查看
针对毫米波雷达由于阵列分辨率限制等因素,其点云成像存在点云密度稀疏、精度低等问题,提出了一种基于合成孔径雷达(SAR)技术的车载平台毫米波雷达三维(距离、方位、俯仰)高分辨点云视频成像方法.首先,利用时域后向投影(BP)成像算法解决近距宽角域成像聚焦难题,获得高分辨二维视频SAR图像;然后,通过基于幅度阈值的复交替方向乘子法压缩感知网络(CV-ADMM-CSNet)获得场景高程信息,通过模型化方法并结合数据训练,实现快速实时高分辨三维成像;最后,结合多帧视频成像处理获得动态三维高分辨点云图像.仿真和实测数据实验,验证了本文算法的有效性.
3D Point Cloud Video Imagery of Automotive Millimeter-wave Radar
Due to the limitations of array resolution and etc,the point cloud imaging technology of millimeter-wave radar has the disadvantages of sparse distribution of point cloud and low-precision location.In this paper,a novel point cloud video imaging algo-rithm of 3D millimeter-wave radar on vehicle platform using the synthetic aperture radar(SAR)technology is proposed.First,the time-domain back-projection(BP)algorithm is applied to solve the slant-range wide-angle imaging focusing problem,obtaining well-focused high-resolution 2D image.Second,the amplitude threshold-based Complex-Valued Alternating Direction Method of Multipliers Compressed Sensing Net(CV-ADMM-CSNet)is applied to obtain elevation information of scenes,which achieves fast and real-time high-resolution 3D imaging through modeling methods combined with data training.Finally,the dynamic 3D point cloud image can be successfully generated in combination with the multi-frame SAR imaging.The experimental analysis using sim-ulated and measured data is performed to confirm the effectiveness of the proposed algorithm.

millimeter-wave radar3D point cloud video imagingsynthetic aperture radar

崔硕、蒋梦杰、张邦杰、陈宇智、徐刚

展开 >

东南大学 毫米波全国重点实验室,江苏 南京 210096

毫米波雷达 三维点云视频成像 合成孔径雷达

中央高校基本科研业务费资助项目

2242022K60008

2024

现代雷达
南京电子技术研究所

现代雷达

CSTPCD北大核心
影响因子:0.568
ISSN:1004-7859
年,卷(期):2024.46(10)