首页|基于全局感知和边缘细化的TBM岩渣分割方法

基于全局感知和边缘细化的TBM岩渣分割方法

扫码查看
准确分割并分析TBM掘进过程中产生的岩渣,可反映隧道的地质情况和设备运行情况,对施工风险预警、提高施工效率具有重要意义.为了解决分割过程中大岩渣块检测不完整、小岩渣块漏检和边缘分割不清晰等问题,提出基于全局感知和边缘细化的岩渣分割网络.设计全局感知模块,利用不同大小的深度条形卷积注意力网络,扩大网络的感受野,增强对岩渣块分割的完整性;引入边缘细化模块,聚合空间注意力和通道注意力,并使用通道打乱方法促进不同通道之间的信息交流,提升网络对图像细节的感知能力,提高对岩渣边缘分割的准确性.通过在自制数据集上的测试,相较于其他经典算法,所提出的网络客观评价指标均有提升,召回率、精确率、交并比和F1分数分别达到98.37%、91.48%、90.11%和94.80%;同时分割效果图更加完整,边缘更加清晰.
TBM Muck Segmentation Method Based on Global Perception and Edge Refinement
Accurately segmenting and analyzing the muck generated during TBM excavation can reflect the geologi-cal conditions of tunnels and the operation of equipment,which is of great significance for construction risk warning and improving construction efficiency.To address issues such as incomplete detection of large muck blocks,missed detection of small muck blocks,and unclear edge segmentation during the segmentation process,a muck segmenta-tion network based on global perception and edge refinement is proposed.A global perception module is designed to utilize deep strip convolutional attention networks of different sizes to expand the network's receptive field and en-hance the integrity of muck block segmentation.An edge refinement module is introduced to aggregate spatial atten-tion and channel attention,and a channel shuffle method is used to promote information exchange between different channels,thereby improving the network's perception ability for image details and the accuracy of muck edge seg-mentation.Through testing on a self-made dataset,compared with other classic algorithms,the proposed network achieves improvements in objective evaluation metrics,with recall,precision,intersection over union,and F1 score reaching 98.37%,91.48%,90.11%,and 94.80%,respectively.Additionally,the segmentation effect images are more complete,and the edges are clearer.

Muck segmentationGlobal perceptionEdge refinementTBMAttention mechanism

张艳、霍涛、张众维、马春明

展开 >

天津城建大学,天津 300384

岩渣分割 全局感知 边缘细化 TBM 注意力机制

国家重点研发计划工业软件重点专项

2021YFB3301600

2024

现代隧道技术
中铁西南科学研究院有限公司 中国土木工程学会隧道及地下工程分会

现代隧道技术

CSTPCD北大核心
影响因子:1.493
ISSN:1009-6582
年,卷(期):2024.61(3)