首页|基于深度学习的隧道不良地质体超前预报图像智能预测算法

基于深度学习的隧道不良地质体超前预报图像智能预测算法

扫码查看
针对隧道不良地质体超前预报图像分析方法中存在的主观性大、效率低下等问题,构建一种名为IR-TAG的隧道不良地质体超前预报图像智能预测算法.该算法包括一种基于多重交叉注意力的特征编码结构,能有效弥补卷积神经网络固有局部性的归纳偏置导致难以充分提取全局上下文信息的不足,然后引入具有良好分类性能和效率的EffcinetNet-v2作为骨干网络,提升模型对于不良地质体特征的提取能力.结果表明:在检测精度方面,IR-TAG的mAP和F1分别为84.09%和83.63%,高于其他常用深度学习模型;在检测效率方面,IR-TAG具有更小的模型大小(73.5 MB)以及更快的图像处理速度(38.87 f/s),适用于隧道施工中的不良地质体超前预报图像智能、快速检测任务.
Intelligent Image Analysis Algorithm for Advance Forecasting of Adverse Geological Bodies in Tunnels Based on Deep Learning
In response to the subjectivity and inefficiency issues in the analysis methods for advance forecasting images of adverse geological bodies in tunnels,this paper propose an intelligent image analysis algorithm called IR-TAG.This algorithm includes a feature encoding structure based on multi-cross attention,which effectively compensates for the inherent local induction bias of convolutional neural networks,making it difficult to fully extract global con-textual information.Then,it introduces EffcinetNet-v2 as the backbone network,which has good classification per-formance and efficiency,to enhance the model's ability to extract features of adverse geological bodies.The results show that in terms of detection accuracy,the mAP and F1 of IR-TAG are 84.09%and 83.63%,respectively,higher than other commonly used deep learning models.In terms of detection efficiency,IR-TAG has a smaller model size(73.5 MB)and faster image processing speed(38.87 f/s),making it suitable for intelligent and rapid detection of ad-vance forecasting images of adverse geological bodies in tunnel construction.

Tunnel engineeringAdvance geological predictionDeep learningIntelligent prediction

蒋源、王海林、陈兆

展开 >

湖南省交通规划勘察设计院有限公司,长沙 410075

隧道工程 超前地质预报 深度学习 智能预测

湖南省科技人才托举工程湖南省重点领域研发计划

2023TJ-Z022020SKC2010

2024

现代隧道技术
中铁西南科学研究院有限公司 中国土木工程学会隧道及地下工程分会

现代隧道技术

CSTPCD北大核心
影响因子:1.493
ISSN:1009-6582
年,卷(期):2024.61(3)