首页|基于FC-ResNet网络的隧道衬砌裂缝像素级分割方法

基于FC-ResNet网络的隧道衬砌裂缝像素级分割方法

扫码查看
为提升隧道定期巡检中裂缝的检测精度和检测效率,以ResNet作为主干特征提取网络,借鉴U-net"编码-解码"和优化网络结构特征层等方法,提出一种用于隧道衬砌裂缝检测的FC-ResNet算法,实现对衬砌裂缝的像素级分割.为验证本算法的有效性和可靠性,采用CrackSegNet和U-net进行对比验证.结果表明:该算法的检测性能表现优异,测试集的像素准确率、平均交并比及F1-score分别为99.2%、87.4%、0.87,均优于CrackSegNet和U-net,且该算法的单张图片检测时间为122 ms,优于CrackSegNet,与模型结构简洁的U-net基本持平.基于提出的FC-ResNet 算法开发隧道衬砌裂缝智能识别系统,实现对实际隧道工程衬砌裂缝准确、快速的智能化识别.
Pixel-Level Segmentation Method for Tunnel Lining Cracks Based on FC-ResNet Network
To improve the detection accuracy and efficiency of cracks during regular tunnel inspections,this study proposes an FC-ResNet algorithm for tunnel lining crack detection by using ResNet as the backbone feature extrac-tion network,incorporating U-net's"encoder-decoder"structure and optimizing network feature layers.The algo-rithm achieves pixel-level segmentation of lining cracks.To verify its effectiveness and reliability,a comparative validation was conducted using CrackSegNet and U-net.The results show that the proposed algorithm demonstrates excellent detection performance,with a pixel accuracy,mean Intersection over Union(mIoU),and Fl-score of 99.2%,87.4%,and 0.87,respectively,on the test set.These results are superior to those of CrackSegNet and U-net,and the detection time per image is 122 ms,better than CrackSegNet and comparable to the simpler U-net.Based on the FC-ResNet algorithm,an intelligent recognition system for tunnel lining cracks was developed,enabling ac-curate and fast intelligent recognition of cracks in actual tunnel engineering linings.

Tunnel engineeringCrack segmentationDeep learningFully convolutional networkResidual network

韩凤岩、李慧臻、杨少君、甘帆、肖勇卓

展开 >

中南大学土木工程学院,长沙 410075

中国中铁股份有限公司,北京 100039

中铁交通投资集团有限公司,南宁 530219

隧道工程 裂缝分割 深度学习 全卷积网络 残差网络

国家自然科学基金

U1734208

2024

现代隧道技术
中铁西南科学研究院有限公司 中国土木工程学会隧道及地下工程分会

现代隧道技术

CSTPCD北大核心
影响因子:1.493
ISSN:1009-6582
年,卷(期):2024.61(5)