首页|基于GA-BP神经网络的隧道围岩相似材料配合比设计

基于GA-BP神经网络的隧道围岩相似材料配合比设计

扫码查看
为实现对隧道模型试验中围岩相似材料物理力学参数的控制和优化,设计一种用于围岩相似材料物理力学参数预测的GA-BP神经网络算法,该神经网络结构包含3节点输入层、7节点隐含层、3节点输出层.输入层采用遗传算法(Genetic Algorithm)对BP神经网络的权重和阈值进行改进,以河砂、粉煤灰、机油的含量作为输入参数,密度、黏聚力、内摩擦角作为输出参数;以实测数据作为样本,通过对比分析遗传算法优化前后BP神经网络模型的均方差、绝对误差和相对误差等指标,深入评估模型的性能,并基于分析结果建立一套给定相似比下的围岩相似材料配比设计方法.研究结果表明:GA-BP神经网络算法能够应用于围岩相似材料物理力学参数的拟合和预测,相比传统BP神经网络,GA-BP神经网络预测数据误差更小、精度更高;基于GA-BP神经网络的围岩相似材料物理力学参数预测模型能快速、准确确定给定相似比下的原材料配比范围,减少重复试验次数.
Mix Proportion Design of Similar Materials for Tunnel Surrounding Rocks Based on GA-BP Neural Network
To control and optimize the physical and mechanical parameters of surrounding rock similar materials in tunnel model experiments,a GA-BP neural network algorithm was developed for parameter prediction.The neural network structure comprises a three-node input layer,a seven-node hidden layer,and a three-node output layer.The Genetic Algorithm(GA)was employed to optimize the weights and thresholds of the BP neural network.The in-put parameters included the content of river sand,fly ash,and motor oil,while the output parameters included densi-ty,cohesion,and internal friction angle.Using measured data as samples,the model's performance was thoroughly evaluated by comparing the mean square error,absolute error,and relative error of the BP neural network before and after GA optimization.Based on the analysis,a mix proportion design method for surrounding rock similar materials under a given similarity ratio was established.The results indicate that the GA-BP neural network algorithm can effec-tively fit and predict the physical and mechanical parameters of surrounding rock similar materials.Compared to the traditional BP neural network,the GA-BP neural network achieves lower prediction errors and higher accuracy.The prediction model based on the GA-BP neural network can quickly and accurately determine the range of raw material mix ratios under a given similarity ratio,significantly reducing the number of repeated experiments.

Tunnel engineeringModel testSurrounding rock similar materialGA-BP neural networkParameter predictionMix proportion design

张昕阳、申玉生、常铭宇、王浩鱇、潘笑海、王岩岩

展开 >

西南交通大学交通隧道工程教育部重点实验室,成都 610031

西南交通大学陆地交通地质灾害防治技术国家工程研究中心,成都 610031

隧道工程 模型试验 围岩相似材料 GA-BP神经网络 参数预测 配合比设计

2024

现代隧道技术
中铁西南科学研究院有限公司 中国土木工程学会隧道及地下工程分会

现代隧道技术

CSTPCD北大核心
影响因子:1.493
ISSN:1009-6582
年,卷(期):2024.61(6)