首页|基于BO-Adam-Bi-LSTM的盾构下穿既有隧道变形预测及调控

基于BO-Adam-Bi-LSTM的盾构下穿既有隧道变形预测及调控

扫码查看
针对盾构隧道下穿施工诱发既有隧道变形和安全控制的问题,设计一种基于深度学习的既有隧道变形预测模型以捕捉变形发展规律.使用Adam算法优化双向长短期记忆网络(Bi-LSTM),采用贝叶斯优化(BO)调参,建立基于BO-Adam-Bi-LSTM的盾构下穿既有隧道变形预测模型,并与其他神经网络模型的预测结果进行对比;利用SHAP提高模型的可解释性,确定关键施工参数.结果表明:建立的BO-Adam-Bi-LSTM变形预测模型具有较高的预测精度,预测水平位移与竖向位移时,其测试集R2分别为0.935、0.924,均方根误差RMSE分别为0.504、0.903,平均绝对误差MAE分别为0.415、0.824;采用SHAP方法发现盾构土舱压力对既有隧道水平变形预测结果的影响较大.通过调整对模型预测结果贡献度较大的几个参数,可以有效地将隧道变形值控制在预警范围内.
Deformation Prediction and Control for Shield Tunnelling Passing under Existing Tunnels Based on BO-Adam-Bi-LSTM
To address deformation and safety control issues induced by shield tunnelling passing under existing tun-nels,a deep learning-based prediction model was designed to capture deformation development patterns.A Bi-di-rectional Long Short-Term Memory network(Bi-LSTM)was optimized using the Adam algorithm,with parameter tuning performed via Bayesian Optimization(BO),forming the BO-Adam-Bi-LSTM model for deformation predic-tion of shield tunnelling passing under existing tunnels.The model's prediction results were compared with other neural network models,and SHAP was used to enhance interpretability and identify key construction parameters.Results show that the BO-Adam-Bi-LSTM model achieves high prediction accuracy,with R2 values of 0.935 and 0.924,RMSE values of 0.504 and 0.903,and MAE values of 0.415 and 0.824 for the test sets.SHAP analysis reveals that shield chamber pressure has a significant impact on the prediction of horizontal deformation in existing tunnels.By adjusting a few key parameters with high contributions to the model predictions,tunnel deformation values can be effectively controlled within the warning range.

Existing tunnelDeformation predictionSafety controlBO-Adam-Bi-LSTMSHAP

张明书、姚琛、吴贤国、陈虹宇、冯宗宝、杨赛

展开 >

中铁开发投资集团有限公司,昆明 650500

华中科技大学土木与水利工程学院,武汉 430074

香港理工大学建筑及房地产学系,香港 999077

既有隧道 变形预测 安全控制 BO-Adam-Bi-LSTM SHAP

2024

现代隧道技术
中铁西南科学研究院有限公司 中国土木工程学会隧道及地下工程分会

现代隧道技术

CSTPCD北大核心
影响因子:1.493
ISSN:1009-6582
年,卷(期):2024.61(6)