首页|基于特征降维和深度学习方法的城市隧道爆破振动参数预测研究

基于特征降维和深度学习方法的城市隧道爆破振动参数预测研究

扫码查看
为了对爆破施工诱发的振动进行精准预测,提出一种基于t-SNE特征降维算法和BWO算法优化的深度学习GRU模型.基于厦门海沧海底隧道陆域浅埋段的爆破振动监测数据,以岩石单轴抗压强度、岩体完整性系数、爆心距、炸药单耗、辅助孔排距、周边孔孔距6个参数为输入变量,以主控爆破振动参数爆破振速和爆破主频为输出变量,对该模型的预测准确性进行验证,并与传统机器学习模型SVR算法和BPNN算法进行对比.结果表明,采用t-SNE-BWO-GRU深度学习模型对爆破振动参数进行预测,其R2平均值为0.976 0,MAPE平均值为5.70%,爆破振速RMSE为0.019 3,爆破主频RMSE为2.2140,可以实现对爆破振动参数的准确预测.
Prediction of Blasting Vibration Parameters in Urban Tunnels Based on Feature Dimensionality Reduction and Deep Learning
To achieve precise prediction of vibrations induced by blasting construction,an optimized GRU deep learning model is proposed based on the t-SNE feature dimensionality reduction algorithm and the BWO algorithm.Using blasting vibration monitoring data from the shallow-buried land section of the Xiamen Haicang tunnel,six pa-rameters—rock uniaxial compressive strength,rock mass integrity coefficient,distance from blasting source,explo-sive consumption,auxiliary hole spacing,and peripheral hole spacing—were selected as input variables.The key blasting vibration parameters,including blasting vibration velocity and blasting dominant frequency,were set as out-put variables to validate the predictive accuracy of the model.Comparative analysis was conducted with traditional machine learning models,including SVR and BPNN algorithms.Results show that the t-SNE-BWO-GRU deep learning model achieves an average R2 value of 0.976 0,an average MAPE value of 5.70%,a RMSE of 0.019 3 for blasting vibration velocity,and a RMSE of 2.214 0 for blasting dominant frequency,demonstrating high accuracy in predicting blasting vibration parameters.

Urban tunnelsBlasting constructionDeep learningFeature dimensionality reductionOptimization al-gorithmRegression prediction

高福忠

展开 >

中铁十八局集团第一工程有限公司,保定 072750

城市隧道 爆破施工 深度学习 特征降维 优化算法 回归预测

2024

现代隧道技术
中铁西南科学研究院有限公司 中国土木工程学会隧道及地下工程分会

现代隧道技术

CSTPCD北大核心
影响因子:1.493
ISSN:1009-6582
年,卷(期):2024.61(6)