首页|中国手语识别方法及技术综述

中国手语识别方法及技术综述

扫码查看
中国手语具有自己独特的文化内涵和复杂表达,是近3000万听障人士融入社会的重要手段.手语识别技术能帮助听障人士走出信息孤岛,和健听人建立有效沟通.中国手语识别方法大致经历了传统技术识别和现代智能识别两个时期.前者主要包含数据收集、预处理、特征提取和分类识别四个主要阶段,主流技术有HMMs、SVM和DTW等,基于手语手形数据完成识别,不依赖海量样本数据;后者主要利用深度神经网络和人工智能技术,强调深度学习,迁移学习和技术融合,模型对样本数据量的依赖程度较高.我国已经开始广泛建设各类手语语料库,但需要进一步规范和推广.
Review of Chinese Sign Language Recognition Methods and Technologies
Chinese Sign Language has its own unique cultural connotations and complex expressions,and it is an important means for more than 30 million hearing-impaired people to integrate into society.Sign language recognition technology can assist individuals with hearing impairments in bridging communication gaps and establishing effective communication with those who can hear.Chinese sign language recognition methods have gone through roughly two stages of traditional technology recognition and modern intelligent recognition.The former mainly includes four stages of data collection,preprocessing,feature extraction,and classification recognition.Hidden Markov Models(HMMs),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)are mainstream technologies.It achieves recognition based on hand data without relying on extensive sample data.The latter mainly combines deep neural network and artificial intelligence technology,emphasizing deep learning,transfer learning,and technology integration.The model is highly dependent on the amount of sample data.China has started to extensively develop various sign language corpora,but it requires further standardization and promotion.

sign language recognition technologiescorpus,deep neural network,transfer learning

蒋贤维、孙计领、张艳琼、王立平、蒋小艳、韩雪

展开 >

南京特殊教育师范学院数学与信息科学学院(南京,210038)

手语识别技术 语料库 深度神经网络 迁移学习

国家社会科学基金年度项目

20BRK029

2024

现代特殊教育
江苏教育报刊总社

现代特殊教育

影响因子:0.14
ISSN:1004-8014
年,卷(期):2024.(6)