首页|基于英汉双语短语级平行语料的类别知识挖掘研究

基于英汉双语短语级平行语料的类别知识挖掘研究

扫码查看
在已有聚类算法的基础上,基于英汉双语短语级人文社会科学平行语料,进行类别知识挖掘的实验。根据实验数据并结合具体的研究需求,确定相应的聚类算法和英语形态转换的算法。通过对汉语、英语和英汉双语阋汇级知识聚类的性能进行对比,确定英汉双语词汇特征的性能优于单语。获取的类别知识可以直接应刚到知识库、机器翻译模型的构建中,同时探究英汉两种词汇在类别知识获取过程中具体表现。
Research of Mining the Category Knowledge Based on English - Chinese Humanities and Social Sciences Parallel Corpus in Phrase Level
The experiment of mining the category knowledge from English - Chinese humanities and social sciences parallel corpus in phrase level is performed based on the established clustering algorithm. The clustering and morphological conver- sion algorithms are determined by experimental data and specific research needs. The performance of English - Chinese bilingual word features is better than monolingual word by comparing the performance of the Chinese, English and English - Chinese word level knowledge clustering. The category knowledge is directly applied to knowledge base and machine translation system, and the English and Chinese word' s expression is explored in mining the category knowledge.

CSSCI English- Chinese parallel corpus in phrase level Bisecting Kmeans clustering algorithm Category knowledge

王东波、韩普、沈思、魏向清

展开 >

南京农业大学信息科学技术学院,南京210095

南京大学信息管理学院,南京210093

南京大学双语词典研究中心,南京210093

CSSCI英汉双语短语级平行语料Bisecting K—means Clustering算法类别知识

国家高技术研究发展计划(863计划)国家社会科.学:基金重点项目江苏省研究生培养创新工程

2011AA01A20611AYY002CXZZ12-0073

2012

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSSCICHSSCD北大核心
影响因子:1.452
ISSN:2096-3467
年,卷(期):2012.(11)
  • 1
  • 1