首页|基于SHAP解释方法的智慧居家养老服务平台用户流失预测研究

基于SHAP解释方法的智慧居家养老服务平台用户流失预测研究

扫码查看
[目的]构建智慧居家养老服务平台用户流失预测模型,并使用SHAP解释方法分析不同特征的影响.[方法]基于智慧居家养老服务平台用户在2019年至2021年三年间产生的超过30万条社区居家养老服务订单数据,通过改进的RFM模型(RFM-MLP)、马斯洛需求层次理论、安德森模型并结合Boruta算法确定用户价值特征、服务选择特征、个人特征三类共11个特征.建立5种机器学习模型,从中选择效果最好的XGBoost模型预测用户流失,运用SHAP解释方法完成特征影响全局解释、特征依赖分析、单样本解释分析.[结果]模型预测结果准确率和F1值均达到87%左右,家政服务服务购买次数、留存天数、年龄等是预测养老服务平台用户流失的重要特征.[局限]仅选取一个地区的数据进行分析,数据量和算法复杂度方面还有提升空间.[结论]SHAP解释方法可以兼顾机器学习预测模型的精度和解释性,能够为智慧居家养老服务平台在运营策略和内容设计方面的优化提供依据.
Predicting User Churn of Smart Home-based Care Services Based on SHAP Interpretation
[Objective]This study constructs a user churn prediction model for smart home-based care services.It utilizes the SHAP interpretation method to analyze the impact of different features on user churn.[Methods]First,we retrieved more than 300,000 community home-based care service orders from 2019 to 2021.Then,we incorporated the RFM model(RFM-MLP),the Maslow's hierarchy of demand theory,the Anderson model,and the Boruta algorithm to identify 11 characteristics across three categories:user values,service selections,and individual features.Third,we chose the XGBoost model from the five established machine learning models for the best performance in predicting user churn.Finally,we employed the SHAP interpretation method to examine the feature impact,dependence,and single-sample analysis.[Results]The predictive model achieves high accuracy and Fl score of approximately 87%.Noteworthy features for predicting user churn on smart home-based care services include domestic service purchase numbers,use length,and user age.[Limitations]Our data was from a single region.The data quality and algorithm complexity could be improved in the future.[Conclusions]The SHAP interpretation method effectively balances accuracy and interpretability in machine learning prediction models.The insights gained provide a foundation for optimizing operational strategies and content design on smart home-based care service platforms.

Smart AgingUser ChurnXGBoostInterpretable Machine LearningSHAP

刘天畅、王雷、朱庆华

展开 >

南京大学信息管理学院 南京 210023

智慧养老 用户流失 XGBoost 可解释性机器学习 SHAP

国家社会科学基金重大项目江苏省高校哲学社会科学研究重大项目

22&ZD3272021SJZDA044

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(1)
  • 52