首页|考虑评论情感表达力及其重要性的个性化推荐算法

考虑评论情感表达力及其重要性的个性化推荐算法

扫码查看
[目的]针对数据稀疏性问题,为探索情感表达对用户特征表示的影响,提出一种考虑评论情感表达力及其重要性的个性化推荐算法.[方法]使用BERT预训练语言模型获取评论文本的向量表示,通过Bi-GRU网络学习其中的语义特征,分别采用情感权重和注意力机制为评论向量分配权重,最后利用DeepFM算法对用户特征和产品特征进行深度交互,预测用户对产品的评分值.[结果]在Amazon Product Data数据集上的实验结果表明,所提算法比基线算法在RMSE和MAE指标上最多可降低24.43%和31.44%;使用情感权重为用户评论加权的方法相比于注意力机制,在RMSE与MAE指标上最多可降低2.59%和3.89%.[局限]所用情感分析方法无法表现用户对产品不同属性的情感倾向.[结论]所提算法考虑了情感对用户特征表达的影响,能够提高推荐准确性.
Personalized Recommendation Algorithm with Review Sentiments and Importance
[Objective]To address the data sparsity issue and explore the impacts of emotional expression on user feature learning,this paper proposes a personalized recommendation algorithm based on sentiment and the importance of online reviews.[Methods]First,we used the BERT pre-trained language model to generate the vector representation of review texts.Then,we fed them into a Bi-GRU network to learn their semantic features.We also assigned weights to the review vector using sentiment weights and attention mechanisms.Finally,we utilized the DeepFM algorithm for deep interaction between user and product features to predict the user's rating of the products.[Results]We examined the proposed model with the Amazon product data dataset.Our model reduced the RMSE and MAE metrics by up to 24.43%and 31.44%compared to the baseline models.Compared with the attention mechanism,our method reduced the RMSE and MAE metrics by up to 2.59%and 3.89%.[Limitations]The sentiment analysis method cannot represent the users'emotional tendencies towards the different attributes of the product.[Conclusions]The proposed method considers the influence of user sentiment on user feature expression,improving the recommendation accuracy.

Recommendation AlgorithmDeep LearningSentiment AnalysisAttention Mechanism

李慧、胡耀华、徐存真

展开 >

西安电子科技大学经济与管理学院 西安 710119

推荐算法 深度学习 情感分析 注意力机制

国家自然科学基金项目

71203173

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(1)
  • 42