首页|基于SpERT-Aggcn模型的专利知识图谱构建研究

基于SpERT-Aggcn模型的专利知识图谱构建研究

扫码查看
[目的]针对知识图谱构建中识别嵌套实体以及提升关系抽取精度的问题,提出信息抽取模型SpERT-Aggcn,并构建绿色合作专利知识图谱.[方法]基于SpERT-Aggcn模型抽取专利摘要文本中的嵌套实体和关系,采用Protégé构建本体并根据所构建本体实现三元组的映射.[结果]在关系抽取任务上,SpERT-Aggcn比SpERT模型的Fl值高2.61个百分点,其中长距离关系抽取Fl值高4.42个百分点;构建的绿色合作专利知识图谱包含699 517个实体、3 241 805条关系.[局限]SpERT-Aggcn模型的短距离关系Fl值低于SpERT模型,说明本文模型对于短距离关系的识别能力较差.[结论]通过基于跨度的实体识别模型以及引入依存文法信息的关系抽取模型,构建的知识图谱完整度更高.
Constructing Patent Knowledge Graph with SpERT-Aggcn Model
[Objective]This paper proposes an information extraction model(SpERT-Aggcn)and constructs knowledge graphs for green cooperation patents based on this model.It helps us identify nested entities and improve the accuracy of relationship extraction for knowledge graphs.[Methods]First,we utilized the SpERT-Aggcn model to extract nested entities and relationships from patent abstracts.Then,we built an ontology using Protégé and mapped the triples with the constructed ontology.[Results]In relationship extraction,the SpERT-Aggcn model's F1 score was 2.61%higher than the SpERT model.The SpERT-Aggcn model's Fl score was 4.42%higher than the SpERT model for the long-distance relationship extraction tasks.The constructed knowledge graph for green cooperation patents contained 699,517 entities and 3,241,805 relationships.[Limitations]The Fl score of SpERT-Aggcn for extracting short-distance relationships was lower than the SpERT model,indicating a weaker capability of the proposed model in identifying short-distance relationships.[Conclusions]The proposed model could help us construct better knowledge graphs.

Green Cooperation PatentKnowledge GraphGraph Convolution NetworkInformation Extraction

何玉、张晓冬、郑鑫

展开 >

北京科技大学经济管理学院 北京 100083

绿色合作专利 知识图谱 图卷积网络 信息抽取

国家自然科学基金项目

71871018

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(1)
  • 34