首页|主题-引文融合视角下重要主题发现及知识流动路径研究

主题-引文融合视角下重要主题发现及知识流动路径研究

扫码查看
[目的]理解与探究知识流动的内在机理与轨迹方向,为科技创新与发展、科学评价与决策提供参考.[方法]以主题作为研究视角,建立知识网络,综合主题影响因子与节点交叉度构建主题重要度指标.基于识别得到的重要主题,分别从知识流入与知识流出视角,利用最大路径搜索算法实现知识流动路径的构建.[结果]实证分析表明,所构建的指标能够对领域重要主题实现有效识别.在此基础上,构造知识流动路径,并得到具有最大知识传播量的领域路径.[局限]知识节点间的知识流动强度度量具有一定的局限性,未能全面考虑到引用行为发生的动机、引用类型等实际引用情况的多变性.[结论]综合分析两种视角下的流动路径可以发现,主题间具有较为普遍的双向知识流动,学科内部存在交流紧密的主题群,为从整体上把握研究主题的形成脉络与继承发展提供有益参考.
Identifying Important Topics and Knowledge Flow Paths with Topic-Citation Fusion
[Objective]Understanding and exploring the internal mechanism and direction of knowledge flow,this paper provides references for science and technology innovation,scientific evaluation,and decision-making.[Methods]We established a topic-based knowledge network and constructed the topic importance indicators with their impact factors and node intersection degrees.We used the maximum path search algorithm based on these important topics to construct the knowledge inflow and outflow paths.[Results]The new method could effectively identify the important topics.We also identified the knowledge flow paths and the domains with the most significant knowledge dissemination.[Limitations]The measurement of knowledge flow intensity between nodes needs to consider citation motivations and types.[Conclusions]This paper identifies two-way knowledge flows between topics.Topic groups communicate closely with each other within each discipline.Knowledge flow paths provide valuable references for grasping the research topic developments as a whole.

Citation AnalysisTopic Citation NetworkTopic ImportanceKnowledge FlowPath Analysis

梁爽、刘小平、柴文越

展开 >

中国科学院文献情报中心 北京 100190

中国科学院大学经济与管理学院信息资源管理系 北京 100190

引文分析 主题引用网络 主题重要性 知识流动 路径分析

中国科学院文献情报能力建设专项

E1290423

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(2)
  • 37