首页|基于时间序列异常检测的热点事件发现

基于时间序列异常检测的热点事件发现

扫码查看
[目的]研究发现信息话题并找到激发公众讨论的现实事件.[方法]构建共词网络检测社团表示话题,基于文档词与话题社团词的重合度计算文档话题向量并依据文档时间计算话题热度时间序列,借助STL分解时间序列并利用3σ原则检测异常,结合异常时点话题的高频词与高相关文档发现激发讨论的现实事件.[结果]以新浪微博河南暴雨的相关发帖为例,发现涉及灾情态势、应急管理以及社会响应等方面的话题.异常检测与分析表明,灾情态势类话题的公众关注度最高,雨情预警及相应防汛行动等是热点事件;应急管理中的抢险救援工作与事故调查情况能够激发讨论;在社会响应方面,受灾者互救事迹、公益捐赠事迹易引发关注.[局限]数据集较小,因而在异常时点检测的阈值判断中使用人工观察设定阈值的方式,在面对较大数据集时需要使用自动阈值确定方法.[结论]话题热度时间序列的异常检测能够发现社平台的热点事件,且在舆情响应中,管理部门需要从救援、预防和恢复三方面出发,及时发布预警信息,公开救灾情况及事故调查情况等回应公众关切,并通过救援、互助、捐赠等事迹的宣传引导积极健康的舆论走向.
Identifying Trending Events Based on Time Series Anomaly Detection
[Objective]This study aims to discover information topics and identify real-world events that stimulate public discussions.It helps us establish timely responses and reduce risks.[Methods]We first constructed a co-word network to detect communities representing topics.Then,we calculated the document topic vectors based on the overlaps between the document words and topic community words.Third,we decided topic popularity time series according to the document time.Finally,we used the STL to decompose topic popularity time series and employed the 3σ rule to detect anomalies.We identified real-world events stimulating discussion by examining high-frequency words and highly correlated documents at anomalous time points.[Results]We examined the new model with posts from Sina Weibo about the heavy rainstorm in Henan.We discovered topics related to disaster situations,emergency management,and social response.Anomaly detection and analysis show that the topics about disaster situations received the highest public attention,with rainfall warnings and flood control actions being hot events.In emergency management,rescue and relief efforts and accident investigation can stimulate discussions.Regarding social response,stories of victims'mutual aid and public donations attract attention.[Limitations]The dataset of this study is relatively small,so we have to manually set the threshold of anomaly detection.An automatic method is needed for larger datasets.[Conclusions]Anomaly detection in topic time series can identify the trending events on social platforms.In crisis response,government agencies need to address rescue,prevention,and recovery aspects,issue timely warnings,provide information on disaster relief and accident investigations to address public concerns,and guide positive or healthy public opinion by promoting rescue,mutual aid,and donation activities.

Anomaly DetectionTopic PopularityTime SeriesCommunity DetectionOnline Social Medias

杨欣谊、马海云、朱恒民

展开 >

南京大学信息管理学院 南京 210023

江苏省数据工程与知识服务重点实验室 南京 210023

南京邮电大学管理学院 南京 210003

异常检测 话题热度 时间序列 社团检测 在线社交平台

国家社会科学基金重点项目

20ATQ006

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(2)
  • 29