首页|基于Stacking集成学习的用户付费转化意向预测方法研究——以免费增值游戏为例

基于Stacking集成学习的用户付费转化意向预测方法研究——以免费增值游戏为例

扫码查看
[目的]提出基于Stacking集成学习预测用户付费转化意向的模型,精准识别潜在付费用户.[方法]基于Stacking集成学习方法构建付费意向预测模型,通过对比不同基模型组合预测效果确定基模型组合方案,借助游戏玩家行为数据集验证模型优越性,并进行可移植性验证.[结果]本文模型预测准确率达90.88%,F1值90.71%,AUC值0.960 2,相对于对比模型中表现最差的Bayesian模型在三种指标上分别提升4.15个百分点、4.50个百分点和0.106 2.[局限]无法预测玩家是否会产生非理性消费行为.[结论]本研究验证了游戏付费情境下Stacking集成学习方法的适用性,多模型的融合可以获得稳定、准确的付费意向预测结果,并证明了模型在预测不同领域用户付费意向上具备可移植性.
Predicting User Pay Conversion Intention Based on Stacking Ensemble Learning:Case Study of Free Value-Added Games
[Objective]This paper proposes a model based on the Stacking ensemble learning method to predict users'intention to convert to paid services,aiming to identify potential paying users accurately.[Methods]We constructed a model for predicting payment intention based on Stacking ensemble learning.First,we determined the base model combination by their prediction performance.Then,we examined the proposed model performance and portability with game players'behavior data set.[Results]The prediction accuracy of our model reached 90.88%,with a Fl value of 90.71%and an AUC value of 0.960 2.Compared to the Bayesian model with the worst performance,our model improved by 4.15%,4.50%,and 0.106 2,respectively.[Limitations]Our model cannot predict whether players will engage in irrational spending.[Conclusions]This study verifies the applicability of the Stacking ensemble learning method in game payment scenarios.The fusion of multiple models can obtain stable and accurate prediction results of payment intention.The proposed model could predict users'payment intentions in different fields.

Stacking Ensemble LearningModel FusionFreemium ModelPayment IntentionPortability

李美玉、刘洋、王艺璇、朱庆华

展开 >

南京大学信息管理学院 南京 210023

Stacking集成学习 模型融合 免费增值模式 付费意向 可移植性

国家自然科学基金面上项目

72174083

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(2)
  • 38