首页|基于提示学习增强的文本情感分类模型

基于提示学习增强的文本情感分类模型

扫码查看
[目的]解决在样本量不足的情况下,使用预训练模型进行情感分类准确率偏低的问题.[方法]提出一种基于提示学习增强的情感分类模型Pe-RoBERTa,以RoBERTa模型为基础,使用不同于传统微调方法的集成提示方法,通过提示帮助模型进一步理解下游任务,改善模型对文本情感特征的提取能力.[结果]在多个公开的中英文情感分类数据集上的实验表明,少样本场景下模型的平均情感分类准确率为93.2%,相较于传统微调和离散型提示,准确率分别提升13.8%和8.1%个百分点.[局限]处理的数据模态仅限于文本形式,目标任务主要为情感二分类任务,没有做细粒度更高的情感分类任务.[结论]Pe-RoBERTa模型能够有效地进行文本情感特征的提取,在多个情感分类任务中取得较高的准确率.
Text Sentiment Classification Algorithm Based on Prompt Learning Enhancement
[Objective]This paper aims to improve the low accuracy of sentiment classification using the pre-trained model with insufficient samples.[Methods]We proposed a prompt learning enhanced sentiment classification algorithm Pe(prompt ensemble)-RoBERTa.It modified the RoBERTa model with integrated prompts different from the traditional fine-tuning methods.The new model could understand the downstream tasks and extract the text's sentiment features.[Results]We examined the model on several publicly accessible Chinese and English datasets.The average sentiment classification accuracy of the model reached 93.2%with fewer samples.Compared with fine-tuned and discrete prompts,our new model's accuracy improved by 13.8%and 8.1%,respectively.[Limitations]The proposed model only processes texts for the sentiment dichotomization tasks.It did not involve the more fine-grained sentiment classification tasks.[Conclusions]The Pe-RoBERTa model can extract text sentiment features and achieve high accuracy in sentiment classification tasks.

Pe-RoBERTaSentiment ClassificationPrompt LearningFeature Extraction

黄泰峰、马静

展开 >

南京航空航天大学经济与管理学院 南京 211106

Pe-RoBERTa 情感分类 提示学习 特征提取

国家自然科学基金南京航空航天大学研究生科研与实践创新项目

72174086xcxih20220910

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(3)
  • 32