首页|一种用于解析问答推理过程的多轮迭代检索算法研究

一种用于解析问答推理过程的多轮迭代检索算法研究

扫码查看
[目的]针对当前阅读理解类问答推理过程中传统无监督检索方式句子关联性不足的问题,设计一种检索模型,研究问答任务的推理过程,探求问答任务的可解释性.[方法]提出一种新型无监督检索模型ISR,模型中融合皮尔逊相关系数、GloVe词嵌入、IDF加权等主要模块,ISR模型通过多轮迭代方式细粒度检索推理句.[结果]对比模型MSSwQ,ISR模型在MultiRC数据集上进行实验,P、R、F1指标平均高出2.4、1.8、2.1个百分点;在HotPotQA数据集上进行实验,P、R、F1指标平均高出4.8、2.6、3.7个百分点.[局限]检索采用硬匹配,可能存在过分匹配的情形.[结论]本文模型能够提升检索推理句的准确性,检索的推理句能够有效应用于问答任务的推理过程.
Multi-Round Iterative Retrieval Algorithm for Parsing Question-Answering Process
[Objective]This paper designs a retrieval model to explore the interpretability of question-answering tasks.It examines the reasoning processes of these reading comprehension models and improves sentence relevance in traditional unsupervised retrieval algorithms.[Methods]We proposed a new unsupervised retrieval model ISR,which integrated modules of Pearson correlation coefficient,GloVe word embeddings,and IDF weighting.The ISR model conducted fine-grained retrieval of inference sentences through multi-round iterations.[Results]The proposed model's P,R,and F1 metrics were 2.4%,1.8%,and 2.1%higher than the MSSwQ model on the MultiRC dataset.Its P,R,and F1 metrics were 4.8%,2.6%,and 3.7%higher than the MSSwQ on the HotPotQA dataset.[Limitations]There might be excessive matching issues due to the model's retrieval matching mechanism.[Conclusions]The proposed model improves the accuracy of retrieval inference sentences,which can be effectively applied to the question-answering tasks.

Reading Comprehension Question-AnsweringUnsupervised FrameworkMulti-Round IterationsQuestion-Answering InferenceInference Sentence Retrieval

周长顺、应文豪、钟珊、龚声蓉

展开 >

苏州大学计算机科学与技术学院 苏州 215008

常熟理工学院计算机科学与工程学院 常熟 215500

阅读理解问答 无监督框架 多轮迭代 问答推理 推理句检索

国家自然科学基金中国博士后科学基金

619720592021M692368

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(3)
  • 35