首页|融合多特征深度学习的印章识别及应用研究

融合多特征深度学习的印章识别及应用研究

扫码查看
[目的]为传承和弘扬印章文化,提升对复杂情境下印章的识别效果,结合知识图谱和可视化技术对识别结果及相关知识进行结构化展示.[方法]提出一种融合多特征的深度学习模型.首先,提取印章图像的颜色特征图、边缘特征图和灰度特征图;其次,将三种特征图输入深度学习模型进行识别;再次,将识别结果与知识图谱中的节点进行比对;最后,对相关知识进行可视化展示.[结果]采集并标注《寒食帖》等13幅字画上所含的印章,将其中两幅作品作为测试集.与VGG16模型相比,本文模型的精确率、召回率、F1值分别提高28.40、28.67和28.54个百分点.在未融合多特征的情况下,精确率、召回率、F1值分别下降24.30、20.16和22.74个百分点.[局限]本文模型仅能对印章的全局特征进行提取和识别,缺少对印章局部语义信息的识别和推理能力.[结论]本文方法在印章识别任务上具有良好的效果,其中多维度的特征图可以提升模型对复杂情境的识别能力和鲁棒性.
Seal Recognition and Application Based on Multi-feature Fusion Deep Learning
[Objective]To inherit and promote seal culture and enhance the recognition of seals in complex scenarios,this study structurally displays the recognition results and related knowledge using knowledge graphs and visualization techniques.[Methods]We proposed a deep learning model integrating multiple features.First,we extracted the seal images'color,edge,and grayscale feature maps.Then,we input these feature maps into the deep learning model for recognition.Finally,we compared the recognition results with the nodes in the knowledge graph and visualized the related knowledge.[Results]The study collected and annotated seals from 13 calligraphy and painting works,including"The Cold Food Observance",with two selected works as the test set.Compared with the VGG16 model,our new model's precision(P),recall(R),and F1 score improved by 28.40%,28.67%,and 28.54%,respectively.Without integrating multiple features,the P,R,and F1 values decreased by 24.30%,20.16%,and 22.74%,respectively.[Limitations]The proposed model can only extract and recognize global features of seals,lacking the ability to identify and infer their local semantic information.[Conclusions]The proposed method has a good effect on seal recognition tasks,where multi-dimensional feature maps can enhance the model's recognition ability and robustness in complex cases.

Seal RecognitionDeep LearningKnowledge GraphDigital Humanities

张志剑、夏苏迪、刘政昊

展开 >

武汉大学信息资源研究中心 武汉 430072

武汉大学信息管理学院 武汉 430072

武汉大学大数据研究院 武汉 430072

印章识别 深度学习 知识图谱 数字人文

国家自然科学基金重大研究计划科技创新新一代人工智能重大项目(2030)

916462062020AAA0108505

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(3)
  • 41