首页|基于ChatGPT+Prompt的专利技术功效实体自动生成研究

基于ChatGPT+Prompt的专利技术功效实体自动生成研究

扫码查看
[目的]针对专利技术功效实体的自动识别问题,智能感知生成专利文献中的关键技术功效,辅助专利技术功效矩阵高质量构建.[方法]本文提出将ChatGPT应用于专利技术功效实体抽取任务的新思路,使用ChatGPT+Prompt的方法实现专利技术词、功效词以及技术-功效二元组的识别、提取和生成.[结果]本文识别生成了 4个领域、三种语言的专利技术功效实体,跨领域、跨语言、提示样本数量对比的实验结果(ROUGE值)表明,该方法能够较为准确地识别技术功效二元组.新能源汽车领域效果最佳,英文专利表现最优,跨域能力和跨语言能力显著,给予One-Shot显著提升模型性能.[局限]本文方法仍存在Prompt不标准、生成内容重复、单轮或多轮问答的选择困难等问题.[结论]本文方法具备合理性和可行性,有效降低技术功效实体生成的人力成本和任务门槛,拓展AIGC的应用场景,释放ChatGPT在专利文献挖掘的潜力.
Generating Effectiveness Entities of Patent Technology Based on ChatGPT+Prompt
[Objective]This paper constructs a new model that automatically identifies and extracts patent technology and function entities.It constructs a matrix for high-quality technology and function.[Methods]We utilized ChatGPT+Prompt to extract patent technical efficacy entities and recognize,extract,and generate technology and function words with technology-function binary groups.[Results]The proposed method recognized and generated patent technology and function entities in four domains and three languages.Our method can generate technology-function binary groups more accurately in the cross-domain,cross-language,and prompted sample size comparisons.The model yielded the highest ROUGE values with the electronic automobiles and English patents.Giving One-Shot will significantly improve the model's cross-domain and cross-linguistic performance.[Limitations]The proposed method lacks standards for prompts,generates duplicated contents,and needs multi-round Q&A.[Conclusion]The proposed method effectively reduces the labor cost and task threshold of technology and function entity generation.It expands the application scenarios of AIGC and releases the potential of ChatGPT in patent document exploration.

Patent Technology Function MatrixTechnology WordsFunction WordsEntity RecognitionGenerative ModelsChatGPTPrompt

白如江、陈启明、张玉洁、杨超

展开 >

山东理工大学信息管理研究院 淄博 255000

浙江大学公共管理学院 杭州 310058

专利技术功效矩阵 技术词 功效词 实体识别 生成式模型 ChatGPT Prompt

山东省社会科学规划研究一般项目

21CTQJ11

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(4)
  • 35