首页|基于AlexNet模型的南海地图多标签自动分类研究

基于AlexNet模型的南海地图多标签自动分类研究

扫码查看
[目的]实现地图的多重语义分类,满足地图精准检索与情报分析的需求.[方法]设计地图类目体系,提出地图多标签分类策略,基于AlexNet卷积神经网络分类模型实现南海地图多标签自动分类.[结果]南海地图多标签自动分类模型的Fl值为0.979,模型能够有效实现南海地图的多标签自动分类.[局限]多标签标注数据集的深层次类目有待补充.[结论]研究内容为基于语义的地图科学分类、精准检索与跨类关联提供了参考.
Automatic Multi-Label Classification of South China Sea Maps Based on AlexNet Model
[Objective]This paper aims to achieve multi-semantic classification of maps and meet the needs for precise map retrieval and intelligence analysis.[Methods]We designed a map category system and proposed a multi-label map classification strategy.It realized the automatic classification of South China Sea maps based on the AlexNet convolution neural network classification model.[Results]The Fl value of the proposed model is 0.979.This model can effectively realize the multi-label automatic classification of the South China Sea maps.[Limitations]The deep categories of multi-label annotated datasets need to be supplemented.[Conclusions]This paper provides a reference for the semantic-based scientific classification of maps,precise retrieval,and cross-category association.

Map ImageMulti-label ClassificationAlexNet ModelSouth China Sea

齐小英、李晗语、杨海平

展开 >

南京大学信息管理学院 南京 210023

南京大学中国南海研究协同创新中心 南京 210023

地图 图像 多标签分类 AlexNet模型 南海

国家社会科学基金重大项目

19ZDA347

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(4)
  • 39