首页|基于图卷积网络和注意力机制的谣言检测方法

基于图卷积网络和注意力机制的谣言检测方法

扫码查看
[目的]针对目前的谣言检测方法未能充分考虑评论间的转发关系特征和文本语义特征,提出一种基于图卷积网络和注意力机制的谣言检测方法.[方法]首先,对评论间转发和回复关系特征进行分析,构建评论关系特征图,充分挖掘评论间的关联特性.然后,根据评论间的文本语义相似性,使用BERT模型生成句子的向量化表示并通过计算余弦相似度构建评论的语义特征图,充分提取评论的语义相关性.最后,基于图卷积网络完成不同节点之间的信息传递,并在各节点信息传输过程中使用注意力机制区分源评论和其他评论对谣言检测的影响,进而得到评论节点的准确表示.[结果]在公开数据集上进行实验,结果显示所提方法在Twitter15和Twitter16数据集上的准确率分别达到0.860和0.870,F1均值分别为0.858和0.866.与BiGCN方法相比,准确率分别提升了5.1%和1.5%,F1均值分别提升了5.0%和1.9%.[局限]仅使用文本数据进行谣言检测,未结合图片、用户属性及时间属性等特征.[结论]在公开数据集上进行应用,验证了所提方法可以有效地提升谣言检测性能,为谣言识别与检测任务提供有价值的参考.
Detecting Rumor Based on Graph Convolution Network and Attention Mechanism
[Objective]This paper proposes a rumor detection method based on a graph convolutional network and attention mechanism,which utilizes comment forwarding and text semantic features.[Methods]Firstly,we analyzed the forwarding and replying relationship among comments and constructed a comment relationship feature map to explore the comments'correlations.Then,we used the BERT model to generate the vector representation of sentences based on their text semantic similarity.We also built the semantic feature map of comments by calculating the cosine similarity and fully extracting their semantic relevance.Third,we completed information dissemination among nodes based on a Graph Convolutional Network(GCN).We also used the attention mechanism to distinguish the impact of original and other comments on rumor detection.Finally,we obtained an accurate representation of the comment nodes.[Results]Our model's accuracy on the Twitter15 and Twitterl6 public datasets reached 0.860 and 0.870,with F1 mean values of 0.858 and 0.866.Compared with the BiGCN method,our model's accuracy improved by 5.1%and 1.5%on the Twitterl5 and Twitterl6 datasets,and the F1 mean improved by 5.0%and 1.9%,respectively.[Limitation]We only used texts for rumor detection.Future research will combine images,user attributes,and time attributes to improve the model's accuracy.[Conclusion]The proposed method can effectively improve the performance of rumor detection,providing valuable references for related tasks.

Graph Convolutional NetworksAttention MechanismRumor DetectionBERT Model

凤丽洲、刘馥榕、王友卫

展开 >

天津财经大学统计学院 天津 300222

中央财经大学信息学院 北京 100081

图卷积网络 注意力机制 谣言检测 BERT模型

国家社会科学基金国家自然科学基金教育部人文社会科学研究项目

18CTJ0086190622019YJCZH178

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(4)
  • 29