首页|融合边缘采样和Tri-training的用户评论情感分析方法

融合边缘采样和Tri-training的用户评论情感分析方法

扫码查看
[目的]针对用户评论数据量大、情感倾向模糊、内容短小等特点,提出融合边缘采样和Tri-training的用户评论情感分析方法.[方法]通过构建基于一对多拆解策略的多分类支持向量机,并融合考虑余弦相似度的边缘采样策略构造初始集,提出结合软投票机制的Tri-training算法.[结果]本文算法对Tri-training算法投票机制的改进,进一步减小了多个分类器对于样本分类投票判断失误的概率,使所有类别精确率均在79%以上.[局限]未考虑多媒体数据的信息提取.[结论]与传统及近年改进的半监督学习算法相比,本文提出的融合边缘采样和Tri-training的算法在分类准确率和效率上具有一定的优越性.
Sentiment Analysis of User Reviews Integrating Margin Sampling and Tri-training
[Objective]This paper proposes a sentiment analysis method for user reviews integrating margin sampling and tri-training.It addresses the issues of the large volume of user reviews,ambiguous sentiment tendencies,and short content.[Methods]First,we constructed a multi-class support vector machine based on a one-vs-all decomposition strategy.Then,we integrated a margin sampling strategy considering cosine similarity to create an initial set.Finally,we proposed a Tri-training algorithm combining a soft voting mechanism.[Results]The proposed algorithm improved the voting mechanism in the Tri-training algorithm,which further reduced the probability of misjudgment in sample classification by multiple classifiers.All categories achieved precision rates above 79%.[Limitations]The proposed method does not consider extracting information from multimedia data.[Conclusions]Compared with traditional and recently improved semi-supervised learning algorithms,the proposed algorithm demonstrates classification accuracy and efficiency superiority.

User ReviewsSentiment AnalysisMargin SamplingTri-Training

江亿平、张婷、夏争鸣、李玉花、张兆同

展开 >

南京农业大学信息管理学院 南京 210031

南京农业大学人工智能学院 南京 210031

用户评论 情感分析 边缘采样 Tri-training

江苏省社会科学基金教育部人文社会科学研究规划基金江苏省研究生科研与实践创新计划

21GLC00322YJA630033SJCX23_0229

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(5)
  • 38