首页|基于机器阅读理解的智能咨询问答系统构建

基于机器阅读理解的智能咨询问答系统构建

扫码查看
[目的]改善现有智能咨询系统不足,解决系统难以回答学术问题的局限.[方法]利用深度学习、机器阅读理解、数据增强、信息检索和语义相似度等技术,自建数据集并构建学术知识问答系统,同时针对学术文献特点设计多元段落召回指标,以多维特征提升召回准确度.[结果]通过双模型联合构建学术知识问答系统,ROUGE-L得分达到0.733 8,解决问题正确率达到88.65%,多元段落召回指标准确率也达到88.38%.[局限]仅使用单一领域内容进行实验,在处理复杂的、涉及多个领域的问题时,存在一定的局限性.[结论]将机器阅读理解技术与参考咨询服务深度融合,可以提高学术资源的利用效率和共享效率,为科研人员提供更加全面和准确的信息支持.
Constructing Smart Consulting Q&A System Based on Machine Reading Comprehension
[Objective]This paper aims to improve the smart consulting systems to effectively answer academic questions.[Methods]We utilized deep learning,machine reading comprehension,data augmentation,information retrieval,and semantic similarity techniques to construct datasets and an academic knowledge question-answering system.Additionally,we designed a multi-paragraph recall metric to address the characteristics of academic literature and enhance retrieval accuracy with multidimensional features.[Results]Our new model's ROUGE-L score reached 0.7338,with a question-answering accuracy of 88.65%and a multi-paragraph recall metric accuracy of 88.38%.[Limitations]We only examined the new model with single-domain content,which may limit the system's performance in dealing with complex issues involving multiple domains.[Conclusions]The deep integration of machine reading comprehension technology with reference services can enhance the efficiency and sharing of academic resources and provide more comprehensive and accurate information support for researchers.

Deep LearningMachine Reading ComprehensionSmart Consulting ServicesQ&A Systems

王翼虎、白海燕

展开 >

中国科学技术信息研究所 北京 100038

深度学习 机器阅读理解 智能咨询服务 问答系统

中国科学技术信息研究所创新研究基金青年项目

QN2023-11

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(5)
  • 40