首页|LingAlign:基于跨语言句向量的多语种句对齐方法研究

LingAlign:基于跨语言句向量的多语种句对齐方法研究

扫码查看
[目的]实现多语种句子的自动对齐,为基于平行语料库的数字人文和机器翻译研究提供支持.[方法]采用跨语言句向量技术,将待对齐的双语文本映射到一个共享的向量空间,基于双轮动态规划和改进版余弦相似度算法抽取双语文本中的平行句对.[结果]通过直接评测和间接评测两种方式评估系统性能:直接评测的平均准确率、召回率和F1值分别为0.950、0.960和0.955;间接评测的chrF、chrF++和COMET值分别为55.65、55.85和87.31.[局限]融合文档对齐和句子对齐的语料采集平台有待开发.[结论]所提方法在两类评测任务中的性能均优于现有方法,有助于构建大规模、高质量的多语种平行语料库.
LingAlign:A Multilingual Sentence Aligner Using Cross-Lingual Sentence Embeddings
[Objective]This paper develops a multilingual sentence aligner for parallel corpora-based research in digital humanities and machine translation.[Methods]The system first encodes the bitext to be aligned in a shared vector space,and then calculates the semantic relationship between sentences based on modified cosine similarity.Finally,a two-stage dynamic programming algorithm is used to automatically extract parallel sentence pairs.[Results]We use both intrinsic and extrinsic evaluation to calculate the performance of the system.The intrinsic evaluation shows that the average accuracy,recall and F,values reached 0.950,0.960 and 0.955.Furthermore,the chrF,chrF++and COMET scores achieved in the extrinsic evaluation are 55.65,55.85 and 87.31 respectively.[Limitations]A data capture platform that integrates document alignment and sentence alignment is yet to be developed.[Conclusions]The proposed approach outperforms existing methods in both intrinsic and extrinsic evaluation tasks,which may help to promote the construction of large and high quality multilingual parallel corpora.

Cross-Lingual Sentence EmbeddingsAutomatic Sentence AlignmentNeural Machine Translation

刘磊、梁茂成

展开 >

燕山大学外国语学院 秦皇岛 066004

北京航空航天大学外国语学院 北京 100191

跨语言句向量 自动句对齐 神经机器翻译

国家社会科学基金项目河北省社会科学发展研究重点课题教育部人文社会科学研究项目

19BYY0822023010400617YJC740055

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(6)