首页|基于投票机制的社交网络影响力节点集识别算法

基于投票机制的社交网络影响力节点集识别算法

扫码查看
[目的]为了降低社交网络中种子节点之间的影响重叠程度,提出基于投票机制的社交网络影响力节点集识别算法KSEVoteRank.[方法]综合考虑节点重要性和邻域信息,定义节点投票能力,设计投票分配策略,同时引入衰减因子折扣邻居的投票能力,最后基于投票得分迭代选出高影响力节点.[结果]实验结果表明,在大型社交网络Ca-AstroPh数据集中KSEVoteRank算法选出的影响力节点集的影响重叠程度比VoteRank算法降低约21%.[局限]在重复投票过程中,设置邻居的投票分配策略不变,可能导致一些误差.[结论]基于投票机制的KSEVoteRank算法能够分散性选取高影响力节点,实现较大范围的影响传播.
Identification of a Set of Influential Nodes in Social Networks Based on Voting Mechanism
[Objective]This paper aims to achieve a trade-off between running efficiency and accuracy,this paper proposes a voting-based algorithm for identifying a set of influential nodes in social networks named KSEVoteRank.[Methods]Considering the node importance and the neighborhood information,the voting ability of a node is defined and a voting allocation strategy is designed.Meanwhile,an attenuation factor is introduced to discount the voting ability of neighbors.Finally,the node with the highest voting score is iteratively selected as the seed node.[Results]The experimental results show that the influence overlap of a set of influential nodes detected by the KSEVoteRank algorithm in the large social network Ca-AstroPh dataset is about 21%less than that of the VoteRank algorithm.[Limitations]During the repeated voting process,the voting allocation strategy of the neighbors is fixed,which may cause a slight deviation in the theoretical results.[Conclusions]The KSEVoteRank algorithm,based on a voting mechanism,selects a set of influential nodes in a distributed manner to achieve a widespread propagation of influence,which is applicable to large social networks.

Social NetworkInfluence MaximizationVoting MechanismAttenuation Factor

赵欢、徐桂琼

展开 >

上海大学管理学院信息管理系 上海 200444

社交网络 影响最大化 投票机制 衰减因子

国家社会科学基金项目

23BGL270

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(6)