首页|基于主题覆盖度的科研项目评审专家组推荐方法研究

基于主题覆盖度的科研项目评审专家组推荐方法研究

扫码查看
[目的]针对科研项目同行评议过程,测度专家知识对科研项目主题的覆盖,并通过主题覆盖度为科研项目推荐评审专家组.[方法]提出科研项目评审专家组推荐的三个原则:主题覆盖度最大原则、知识匹配度最大原则、工作量适宜原则.提出基于Overlapping K-means的专家和待评审项目研究主题识别方法,以识别专家和待评审项目的一个或多个研究主题.以主题覆盖度最大为优化目标,提出基于主题覆盖度的专家组推荐模型,通过将推荐问题转化为优化问题,实现科研项目评审专家组的推荐.[结果]案例研究结果表明,通过本文方法构建的专家组在主题覆盖度上平均达到65.13%,相比于两组对照实验分别提高32.38个百分点和29.01个百分点.[局限]案例研究的样本量较为有限,未定量化探讨如何实现科研项目评审专家组推荐三个原则的多目标优化.[结论]本文提出的方法可以有效提高科研项目评审专家组对科研项目的主题覆盖度.
Recommending Reviewer Groups for Research Projects Based on Topic Coverage
[Objective]Aimed at the peer review process of scientific research projects,this paper measures the coverage of reviewers'knowledge on research project topics and constructs expert groups of maximum topic coverage.[Methods]We proposed three principles for recommending reviewer groups for research projects:the maximum topic coverage principle,the maximum knowledge matching principle,and the appropriate workload principle.Then,we developed a method for identifying the research topics of reviewers and projects using the Overlapping K-means.To achieve maximum topic coverage,we constructed a reviewer group recommendation model based on topic coverage,transforming the recommendation problem into an optimization problem.[Results]In two controlled experiments,the reviewer groups constructed by the proposed method increased the topic coverage by 32.38%and 29.01%,respectively.[Limitations]We need to quantitatively explore how to achieve multi-objective optimization for recommending reviewers for research projects according to the three principles.[Conclusions]This research took the reviewer group recommendation for the National Natural Science Foundation of China project application as a case study.It verified the feasibility and effectiveness of the proposed method through qualitative and quantitative analysis.

Review of Scientific Research ProjectsReviewer GroupReviewer RecommendationTopic Coverage

刘晓豫、汪雪锋、朱东华

展开 >

北京电子科技学院管理系 北京 100070

北京理工大学管理与经济学院 北京 100081

科研项目评审 评审专家组 专家推荐 主题覆盖度

国家自然科学基金项目国家自然科学基金项目

7210401371673024

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(6)