首页|基于循环生成对抗网络和Wasserstein损失的谣言检测研究

基于循环生成对抗网络和Wasserstein损失的谣言检测研究

扫码查看
[目的]通过循环生成对抗网络和Wasserstein距离改进的生成损失,利用对抗训练提高谣言检测模型在数据样本不平衡、非配对情况下的稳定性和精确度.[方法]利用生成器和判别器之间的对抗训练实现谣言判别模型的增强.在生成训练过程中引入循环一致性损失和识别损失以实现生成目标的可控性,并使用Wasserstein距离改进模型生成损失,提高生成器的引导效果的同时避免对抗网络训练过程中可能出现的梯度爆炸的问题.[结果]在不平衡谣言数据集PHEME上,所提模型准确率达到0.869 8,F1值达到0.855 0,与基准模型相比,分别提高了 0.006 8和0.018 0.[局限]基于循环生成对抗网络的谣言检测模型只有两个生成器,因此只能实现两种类别样本的转换,只适用于二分类的谣言检测模型,对于多分类谣言检测任务则无法应用.[结论]使用Wasserstein距离改进生成损失的循环生成对抗网络可以有效提升谣言检测模型在数据不平衡情况下的谣言检测能力.
Detecting Rumors Based on CycleGAN and Wasserstein Loss
[Objective]By improving the generative loss with CycleGAN and Wasserstein distance,this paper enhances the stability and accuracy of the rumor detection model in cases of unbalanced and unpaired data samples.[Methods]We developed the enhanced rumor discriminative model through adversarial training between the generator and discriminator.During the generative training process,we introduced cyclic consistency loss and recognition loss to achieve controllability of the generated target.We improved the model generative loss using Wasserstein distance,avoiding the problem of gradient explosion that may occur during adversarial network training.[Results]Our method's accuracy reached 0.8698,and the F1 score was 0.8550 on the unbalanced rumor dataset PHEME.Compared with the baseline method,it has increased by 0.0068 and 0.0180,respectively.[Limitations]The new rumor detection model only has two generators and can only achieve the conversion of two categories of samples.It is suitable for binary classification rumor detection models and cannot be applied to multi-classification rumor detection tasks.[Conclusions]The proposed model can effectively enhance the ability to detect rumors from imbalanced data.

Rumor DetectionCycleGANWasserstein Loss

张洪志、但志平、董方敏、高准、张岩珂

展开 >

三峡大学湖北省水电工程智能视觉监测重点实验室 宜昌 443002

三峡大学计算机与信息学院 宜昌 443002

谣言检测 循环生成对抗网络 Wasserstein损失

国家自然科学基金项目

U1703261

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(7)