首页|基于跨模态注意力和门控单元融合网络的多模态情感分析方法

基于跨模态注意力和门控单元融合网络的多模态情感分析方法

扫码查看
[目的]针对当前多模态情感分析中模态融合与交互不充分、多模态特征提取不完全的问题,提出一种基于跨模态注意力和门控单元融合网络的多模态情感分析方法.[方法]在多模态特征提取方面,增加视频模态中人物微笑程度特征和人物头部姿势特征,丰富了多模态数据的底层特征;在模态融合方面,利用跨模态注意力机制使模态内部以及模态之间的信息进行更充分的交互,利用门控单元融合网络去除冗余信息,并通过自注意力机制分配注意力权重;最后,通过全连接层输出最终情感分类结果.[结果]在中文公开数据集CH-SIMS上与先进的Self-MM模型进行对比,实验结果表明,本文提出的方法在二分类准确率、三分类准确率和F1值上分别提升2.22、2.04和1.49个百分点.[局限]视频中人物的肢体动作在不断变化,不同的肢体动作蕴含不同的情感信息,模型没有考虑到人物在视频中的肢体动作信息.[结论]本文丰富了多模态数据的底层特征,有效实现模态融合,提升了情感分析的效果.
Multimodal Sentiment Analysis Method Based on Cross-Modal Attention and Gated Unit Fusion Network
[Objective]To address the issues of insufficient modality fusion and interaction and incomplete multimodal feature extraction in current multimodal sentiment analysis,this paper proposes a multi-modal sentiment analysis method based on cross-modal attention and gated unit fusion networks.[Methods]In terms of multi-modal feature extraction,we added features of smile degree and head posture of characters in the video modality to enrich the underlying features of multi-modal data.We used the cross-modal attention mechanism in modality fusion to enable more sufficient interactions within and between modalities.We also used the gated unit fusion networks to remove redundant information and the self-attention mechanism to allocate attention weights.Finally,the sentiment classification results are output through the fully connected layer.[Results]Compared with the advanced Self-MM model on the public dataset CH-SIMS,the experimental results show that the proposed method improves the binary classification accuracy,ternary classification accuracy,and F1 score by 2.22%,2.04%,and 1.49%,respectively.[Limitations]The characters'body movements in the video constantly change,and different body movements contain different emotional information.The model does not consider the body movement of characters in the video.[Conclusions]This paper enriches the underlying features of multimodal data,effectively achieves modal fusion,and enhances the performance of sentiment analysis.

Multimodal Sentiment AnalysisAttention MechanismGated MechanismFeature Fusion

陈岩松、张乐、张雷瀚、吕学强

展开 >

北京信息科技大学网络文化与数字传播北京市重点实验室 北京 100101

北京信息科技大学计算机学院 北京 100101

北京邮电大学经济管理学院 北京 100876

多模态情感分析 注意力机制 门控机制 特征融合

国家语言文字工作委员会重点项目北京市教育委员会项目网络文化与数字传播北京市重点实验室开放课题

ZDI145-10KM202311232001ICDD202201

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(7)