首页|基于开源情报的军事知识图谱问答智能服务研究

基于开源情报的军事知识图谱问答智能服务研究

扫码查看
[目的]基于开源情报构建一种军事知识图谱的检索式问答服务系统.[方法]将RoBERTa预训练模型和数据增强技术相结合,解决低资源的军事问答中问句分类和命名实体识别问题,并结合军事领域实体特点提出三维特征的实体链接方法.接着,采用RoBERTa预训练模型和依存句法分析方法,解决简单意图和部分复杂意图问题的关系匹配问题.最终,应用启发式规则完成答案的提取.[结果]问句分类与实体识别F值分别为99.62%、98.35%,关系抽取准确率达到99.72%,问答系统应用评测平均准确率达到91.70%.[局限]本问答系统的军事知识图谱存在自动扩展效率低下的问题,因此,影响了问答服务质量.[结论]本研究实现了一种具备高可解释性和高准确率的军事知识问答智能服务.
Smart Question-Answering Service for Military Knowledge Graphs Based on Open-Source Intelligence
[Objective]This paper uses open-source intelligence to develop a retrieval-based question-answering service system for military knowledge graphs.[Methods]First,we combined the RoBERTa pre-trained model with data augmentation techniques to address the issues of question classification and named entity recognition in low-resource military question-answering.Then,we proposed a three-dimensional feature entity linking method with the characteristics of military domain entities.Third,we utilized the RoBERTa model and dependency parsing analysis to solve the relationship matching issues for simple and partially complex intents.Finally,we applied heuristic rules to extract the answers.[Results]The F1 scores for question classification and entity recognition reached 99.62%and 98.35%,respectively.The accuracy of relation extraction was 99.72%,and the average accuracy of the question-answering system's application evaluation reached 91.70%.[Limitations]The military knowledge graph in this question-answering system suffers from low efficiency in automatic expansion,which affects the quality of the question-answering service.[Conclusions]This study developed a military Q&A service with high interpretability and accuracy.

Military Knowledge GraphQuestion-Answering Intelligent ServiceOpen Source IntelligenceRoBERTa

范俊杰、马海群、刘兴丽

展开 >

黑龙江科技大学计算机与信息工程学院 哈尔滨 150020

黑龙江大学信息资源管理研究中心 哈尔滨 150080

军事知识图谱 问答智能服务 开源情报 RoBERTa

国家社会科学基金重点项目

20ATQ004

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(7)