首页|基于商业管制清单-专利网络映射的关键核心技术识别研究——以工业软件为例

基于商业管制清单-专利网络映射的关键核心技术识别研究——以工业软件为例

扫码查看
[目的]针对西方国家对华技术出口管制场景,提出一种在商业管制清单-专利双层网络中映射的关键核心技术识别方法,为遴选和布局技术攻关方向提供参考.[方法]融合美国商业管制清单(CCL)和专利数据,构建管制清单关联网与加权专利引用网的双层网络,在双层网络中分别采用社区发现算法识别技术集群,计算层间集群的语义相似度实现自动映射,并结合Word2Vec与n-gram方法提取集群关键词用于表征技术主题,与CCL集群相似度最大的专利集群所表征的技术即为关键核心技术.[结果]在工业软件领域进行实证的结果表明,所提方法识别出与CCL集群相似度最大的12个不同专利集群,其相似度均在0.85以上,涉及集成电路IP核、精密测量、过程控制、运动控制和涡轮检测等主题,经文献调研验证为工业软件领域的关键核心技术.[局限]仅选取工业软件进行实证研究;技术路线还有待改进;识别结果有待进一步解读分析.[结论]所提方法不仅能够在微观层次高效、准确地识别出关键核心技术,并且自动化程度高、结果易读性强,具有较高的实际应用价值.
Identifying Core Technologies Based on the Commerce Control List-Patent Network Mapping:Case Study of Industrial Software
[Objective]In response to Western technology export controls on China,this study proposes a method for identifying critical core technologies by mapping the U.S.Commerce Control List(CCL)to a patent-based dual-layer network.The goal is to provide a reference for selecting and prioritizing technology breakthrough directions.[Methods]The study integrates the CCL and patent data to build a dual-layer network consisting of a CCL-related network and a weighted patent citation network.We used a community detection algorithm to identify technology clusters in both layers and calculated the semantic similarity of inter-layer clusters to achieve automatic mapping.Using Word2Vec and the n-gram method,we extracted keywords from each cluster to represent technical topics.Finally,we identified the patent clusters with the highest similarity to the CCL clusters as critical core technologies.[Results]Empirical results in industrial software demonstrate that this method identifies 12 distinct patent clusters with the highest similarity to the CCL clusters,all of which have a similarity of over 0.85.They involve integrated circuit IP cores,precision measurement,process control,motion control,and turbine detection.Literature research has verified them as key core technologies in industrial software.[Limitations]The study only focused on industrial software for empirical research.The technical approach can be improved,and the identification results require further interpretation and analysis.[Conclusions]The proposed method efficiently and accurately identifies key core technology at a micro-level,features a high degree of automation,and is highly readable,providing significant practical application value.

Key Core TechnologyCommerce Control ListDouble-Layer Network MappingIndustrial SoftwareTechnology Identification

朱宇婧、陈芳、王学昭

展开 >

中国科学院文献情报中心 北京 100190

中国科学院大学经济与管理学院信息资源管理系 北京 100190

关键核心技术 商业管制清单 双层网络映射 工业软件 技术识别

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)