首页|融合异构网络表示学习与注意力机制的引文推荐研究

融合异构网络表示学习与注意力机制的引文推荐研究

扫码查看
[目的]扩展涉及引文推荐的异构网络涵盖的节点及其关系,对其进行深层次语义表示,揭示不同关系对引文推荐的影响和差异,提高引文推荐效果.[方法]在引入语义链接构建异构网络的基础上,构建融合注意力机制的异构网络表示学习模型,生成深层次的语义和结构表示,引入相似度指标实现引文推荐,并通过消融实验探索不同因素对引文推荐的影响程度.[结果]引入语义链接前后引文推荐模型AUC相对提升0.012;引入双层注意力机制前后AUC相对提升0.079;对比基线模型CR-HBNE,其AUC和AP分别提升0.185和0.204.[局限]手动选取关联路径不够高效,仅根据两项指标对推荐结果进行评价.[结论]本文方法充分利用引文间的复杂关联和深层语义信息,有效提升引文推荐效果.
Citation Recommendation Using Heterogeneous Network Representation Learning and Attention Mechanism
[Objective]This study aims to expand the heterogeneous network in citation recommendations by including more nodes and relationships.It seeks to provide deep semantic representations and reveal how different relationships impact citation recommendations,ultimately improving the effectiveness of such recommendations.[Methods]By introducing semantic links,we constructed a heterogeneous network representation learning model incorporating an attention mechanism.This model generates deep semantic and structural representations,as well as similarity metrics for citation recommendations.We also conducted ablation experiments to explore the impact of different factors on citation recommendation.[Results]After introducing semantic links,the citation recommendation model's AUC improved by 0.012.With the addition of a dual-layer attention mechanism,there was a further improvement of 0.079 in AUC.Compared to the baseline model CR-HBNE,the AUC and AP improved by 0.185 and 0.204,respectively.[Limitations]Manual selection of relationship paths is inefficient,and evaluating the recommendation results based on only two metrics is relatively simplistic.[Conclusions]The proposed method fully utilizes the complex associations and deep semantic information among citations,effectively improving citation recommendation performance.

Citation RecommendationHeterogeneous NetworksRepresentation LearningAttention Mechanisms

张金柱、孙雯雯、仇蒙蒙

展开 >

南京理工大学经济管理学院 南京 210094

引文推荐 异构网络 表示学习 注意力机制

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)