首页|基于图与语义表示学习的专利引文网络链路预测研究

基于图与语义表示学习的专利引文网络链路预测研究

扫码查看
[目的]研究优化专利引文网络链路预测模型,以提升技术演化分析和预测效果,进一步完善技术扩散理论与方法.[方法]针对专利文献的特点,构建一种新的链路预测模型框架Graph-PatentBERT-RF.首先,利用GraphSAGE模型获得训练集专利引文网络的向量化表示,利用PatentBERT模型得到4个主题维度的专利技术文本的语义表示向量.其次,融合两部分向量结果以及其他特征,进行随机森林模型训练,最终得到优化后的专利引文网络的链路预测概率值.[结果]在量子传感领域进行实证研究,Graph-PatentBERT-RF模型的综合预测性能效果最优,F1-score指标高于基线模型2.2%以上,并阐释了引用关系与多维度技术文本、时滞等特征之间的非线性关系以及特征之间4层以上的复杂交互作用.[局限]数据预处理步骤有待优化,有望进一步提升模型性能.[结论]本文模型提升了专利引文网络的综合预测性能,为当前引文数据不完整的问题给出了优化解决办法,有助于多种基于引文网络的技术演化分析等应用研究的发展.
Link Prediction in Patent Citation Networks Based on Graph and Semantic Representation Learning
[Objective]This study optimizes a link prediction model in the patent citation network to enhance the analysis and prediction of technological evolution.It also further improves theories and methods related to technology diffusion.[Methods]We constructed a new framework for link prediction modeling(Graph-PatentBERT-RF)based on the characteristics of patent literature.First,we used the GraphSAGE model to obtain the vectorized representation of the training set's patent citation network.In contrast,the PatentBERT model provides semantic representation vectors of patent texts in four thematic dimensions.Then,these vectors were combined with other features to train a random forest model.Finally,we obtained the optimized link prediction probabilities in the patent citation network.[Results]An empirical study in quantum sensing demonstrated that the Graph-PatentBERT-RF model achieves optimal comprehensive prediction performance,with an F1-score over 2.2%higher than the baseline models.Our model also illustrated the nonlinear relationships and complex interactions across more than four levels among citation relationships,multidimensional technical text,and time lag features.[Limitations]The data preprocessing steps need further optimization to improve the model's performance.[Conclusions]The constructed model enhances the overall predictive performance of patent citation networks,providing an optimized solution to the current issue of incomplete citation data,and contributes to the development of various applications in technology evolution analysis based on citation networks.

Patent Citation RelationshipLink PredictionTechnology Evolution PathCitation RecommendationGraph Neural Network

胡威、李姝影、张鑫、杨宁

展开 >

中国科学院成都文献情报中心 成都 610299

专利引用关系 链路预测 技术演化路径 引用推荐 图神经网络

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)