首页|基于持续学习的多语言情感分析模型

基于持续学习的多语言情感分析模型

扫码查看
[目的]解决多语言模型在处理新语种任务时由于灾难性遗忘导致的性能下降问题.[方法]提出一种基于持续学习的多语言情感分析模型mLMs-EWC,将持续学习思想融入多语言模型中,使模型能够在学习新语种特征的同时,保留已学习到的旧语种语言特征.[结果]在三种语言的持续情感分析实验中发现,mLMs-EWC模型在法语和英语任务中相比Multi-BERT模型准确率高出约5.0个百分点和4.5个百分点.此外,实验还在轻量化的蒸馏模型上评估了 mLMs-EWC模型,结果显示在英语任务上准确率的提升率高达24.7个百分点.[局限]研究聚焦于三种广泛使用的语言,对其他语言的泛化能力还需进一步验证.[结论]mLMs-EWC模型能够在多语言情感分析任务中减轻灾难性遗忘,并在多语种数据集上实现持续学习.
A Multilingual Sentiment Analysis Model Based on Continual Learning
[Objective]This study addresses the performance degradation due to catastrophic forgetting when multilingual models handle tasks in new languages.[Methods]We proposed a multilingual sentiment analysis model,mLMs-EWC,based on continual learning.The model incorporates continual learning into multilingual models,enabling it to learn new language features while retaining the linguistic characteristics of previously learned languages.[Results]In continual sentiment analysis experiments involving three languages,the mLMs-EWC model outperformed the Multi-BERT model by approximately 5.0%in French and 4.5%in English tasks.Additionally,the mLMs-EWC model was evaluated on a lightweight distilled model,showing an improvement of up to 24.7%in English tasks.[Limitations]This study focuses on three widely used languages,and further validation is needed to assess the model's generalization capability to other languages.[Conclusions]The proposed model can alleviate catastrophic forgetting in multilingual sentiment analysis tasks and achieve continual learning on multilingual datasets.

Multilingual Sentiment AnalysisContinual LearningCatastrophic Forgetting

赵佳艺、徐月梅、顾涵文

展开 >

北京外国语大学信息科学技术学院 北京 100089

多语言情感分析 持续学习 灾难性遗忘

2024

数据分析与知识发现
中国科学院文献情报中心

数据分析与知识发现

CSTPCDCSSCICHSSCD北大核心EI
影响因子:1.452
ISSN:2096-3467
年,卷(期):2024.8(10)